# coding: utf-8
# The code is written by Linghui
import numpy as np
import cv2
from math import floor
from skimage.feature import greycomatrix
def main():
pass
def image_patch(img2, slide_window, h, w):
patch = np.zeros((slide_window, slide_window, h, w), dtype=np.uint8)
for i in range(patch.shape[2]):
for j in range(patch.shape[3]):
patch[:, :, i, j] = img2[i : i + slide_window, j : j + slide_window]
return patch
def calcu_glcm(img, vmin=0, vmax=255, nbit=64, slide_window=5, step=[2], angle=[0]):
mi, ma = vmin, vmax
h, w = img.shape
# Compressed gray range:vmin: 0-->0, vmax: 256-1 -->nbit-1
bins = np.linspace(mi, ma+1, nbit+1)
img1 = np.digitize(img, bins) - 1
# (512, 512) --> (slide_window, slide_window, 512, 512)
img2 = cv2.copyMakeBorder(img1, floor(slide_window/2), floor(slide_window/2)
, floor(slide_window/2), floor(slide_window/2), cv2.BORDER_REPLICATE) # 图像扩充
patch = image_patch(img2, slide_window, h, w)
# Calculate GLCM (5, 5, 512, 512) --> (64, 64, 512, 512)
# greycomatrix(image, distances, angles, levels=None, symmetric=False, normed=False)
glcm = np.zeros((nbit, nbit, len(step), len(angle), h, w), dtype=np.uint8)
for i in range(patch.shape[2]):
for j in range(patch.shape[3]):
glcm[:, :, :, :, i, j]= greycomatrix(patch[:, :, i, j], step, angle, levels=nbit)
return glcm
def calcu_glcm_mean(glcm, nbit=64):
'''
calc glcm mean
'''
mean = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
mean += glcm[i,j] * i / (nbit)**2
return mean
def calcu_glcm_variance(glcm, nbit=64):
'''
calc glcm variance
'''
mean = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
mean += glcm[i, j] * i / (nbit)**2
variance = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
variance += glcm[i, j] * (i - mean)**2
return variance
def calcu_glcm_homogeneity(glcm, nbit=64):
'''
calc glcm Homogeneity
'''
Homogeneity = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
Homogeneity += glcm[i,j] / (1.+(i-j)**2)
return Homogeneity
def calcu_glcm_contrast(glcm, nbit=64):
'''
calc glcm contrast
'''
contrast = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
contrast += glcm[i, j] * (i-j)**2
return contrast
def calcu_glcm_dissimilarity(glcm, nbit=64):
'''
calc glcm dissimilarity
'''
dissimilarity = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
dissimilarity += glcm[i, j] * np.abs(i-j)
return dissimilarity
def calcu_glcm_entropy(glcm, nbit=64):
'''
calc glcm entropy
'''
eps = 0.00001
entropy = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
entropy -= glcm[i, j] * np.log10(glcm[i, j] + eps)
return entropy
def calcu_glcm_energy(glcm, nbit=64):
'''
calc glcm energy or second moment
'''
energy = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
energy += glcm[i, j]**2
return energy
def calcu_glcm_correlation(glcm, nbit=64):
'''
calc glcm correlation (Unverified result)
'''
mean = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
mean += glcm[i, j] * i / (nbit)**2
variance = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
variance += glcm[i, j] * (i - mean)**2
correlation = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
correlation += ((i - mean) * (j - mean) * (glcm[i, j]**2))/variance
return correlation
def calcu_glcm_Auto_correlation(glcm, nbit=64):
'''
calc glcm auto correlation
'''
Auto_correlation = np.zeros((glcm.shape[2], glcm.shape[3]), dtype=np.float32)
for i in range(nbit):
for j in range(nbit):
Auto_correlation += glcm[i, j] * i * j
return Auto_correlation
if __name__ == '__main__':
main()