# GAN(生成对抗网络)
[SDA_GAN](https://github.com/QuantLet/1d_GAN)
[深度学习--GAN学习笔记 【RankFan】](https://www.cnblogs.com/RankFan/p/14698932.html)
## 生成模型
1. [Open AI: generative-models](https://openai.com/blog/generative-models/)
2. [白板推导生成模型综述](https://www.bilibili.com/video/BV1dE411u7TK)
## 学习链接
知乎:
1. [通俗理解生成对抗网络GAN](https://zhuanlan.zhihu.com/p/33752313)
2. [GAN学习指南:从原理入门到制作生成Demo](https://zhuanlan.zhihu.com/p/24767059)
微信公众号:
2. [人工智能学习案例--生成对抗(GAN)神经网络案例](https://mp.weixin.qq.com/s/vlvwYF3RsYHdReQZlbPR2g)
b站:
1. [李宏毅对抗生成网络(GAN)国语教程(2018)](https://www.bilibili.com/video/BV1Up411R7Lk?from=search&seid=10930352085418667642)
2. [Keras 搭建自己的GAN生成对抗网络平台(Bubbliiiing 深度学习 教程)](https://www.bilibili.com/video/BV13J41187Fo?from=search&seid=10930352085418667642)
3. [GAN生成对抗网络精讲 tensorflow2.0代码实战 全网最简洁易懂的GAN课程](https://www.bilibili.com/video/BV1f7411E7wU?from=search&seid=10930352085418667642)
油管补充:
1. [Generative Adversarial Network](https://www.youtube.com/watch?v=0CKeqXl5IY0)
2. [Improved Generative Adversarial Network](https://www.youtube.com/watch?v=KSN4QYgAtao)
## 大佬个人主页
1. [李宏毅课程及其个人主页](http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html)
2. [李宏毅2018年深度学习课程课件机器视频](http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS18.html)
3. [李宏毅2015年机器学习课程课件机器视频](http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLSD15_2.html)
## 论文
1. [NIPS 2016 Tutorial:Generative Adversarial Networks](https://arxiv.org/pdf/1701.00160.pdf)
2. [关于NIPS 2016 Tutorial:Generative Adversarial Networks的视频解读](https://channel9.msdn.com/events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Generative-Adversarial-Networks)
## Code实现
1. [DCGAN-tensorflow](https://github.com/carpedm20/DCGAN-tensorflow)
## Kaggle比赛
CycleGan算法:https://www.kaggle.com/linshokaku/cyclegan-submission
关于Cycle Gan的历史:https://www.jiqizhixin.com/graph/technologies/d7606f55-9fe5-40a6-b9ac-f2d639ad9c25