# Ultralytics YOLO ����, GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args] repeats: the num of conv conv: conv.png
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 0:layer index P1:"level" of feature extraction in backbone /2: This denotes the downsampling factor
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 [128, 3, 2]: 128 filters, 3x3 kernel, stride 2
- [-1, 3, C2f, [128, True]] # 2 True: residual connection enabled
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]] # 4
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]] # 6
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]] # 8
- [-1, 1, SPPF, [1024, 5]] # 9
# find the corresponding illustration on the netron. e.g. model.9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # resize
- [[-1, 6], 1, Concat, [1]] # cat backbone P4 # 6-->focus on the final conv block
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]] # 16
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]] # 19
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # 22 Detect(P3, P4, P5)

@BangBang
- 粉丝: 1w+
最新资源
- (源码)基于OpenGL框架的CG机器人手臂模拟系统.zip
- 基于MATLAB的模糊自适应PID控制:程序调通,动态性能提升的10页报告 - 仿真
- 微电网两阶段鲁棒优化经济调度方法及其Python代码实现
- (源码)基于 Raspberry Pi 的 FM 广播系统.zip
- MATLAB仿真下基于串电阻策略的双馈风力发电机低电压穿越研究
- 基于深度强化学习(DQNDDPGTD3)的混合动力汽车能量管理策略研究与应用
- (源码)基于Python和PyTorch的图像分类深度学习系统.zip
- 复现兰志勇老师的新型三矢量模型:预测电流控制下的永磁同步电机控制原理 - 三角函数运算 权威版
- 基于MATLAB的信号处理GUI:AM、DSB、SSB及FM调制解调交互系统设计与实现 · MATLAB
- (源码)基于C语言的嵌入式LED显示与串行通信系统.zip
- 小型三相光伏并网发电系统:电导增量法与干扰观察法的控制策略研究
- (源码)基于C语言的Crazyflie无人机控制系统.zip
- 永磁同步电机绕组计算器:磁动势与绕组系数的技术解析及应用 说明
- 基于PLC S7-1200与MCGS组态的小区恒压供水系统仿真及优化
- (源码)基于Python的智能家庭助手系统.zip
- 基于OpenFAST与Simulink联合仿真模型的非线性风电机组独立变桨与统一变桨控制研究
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



- 1
- 2
- 3
- 4
- 5
- 6
前往页