# Albumentations
[](https://badge.fury.io/py/albumentations)

Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to increase the quality of trained models. The purpose of image augmentation is to create new training samples from the existing data.
Here is an example of how you can apply some augmentations from Albumentations to create new images from the original one:

## Why Albumentations
- Albumentations **[supports all common computer vision tasks](#i-want-to-use-albumentations-for-the-specific-task-such-as-classification-or-segmentation)** such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation.
- The library provides **[a simple unified API](#a-simple-example)** to work with all data types: images (RBG-images, grayscale images, multispectral images), segmentation masks, bounding boxes, and keypoints.
- The library contains **[more than 70 different augmentations](#list-of-augmentations)** to generate new training samples from the existing data.
- Albumentations is [**fast**](#benchmarking-results). We benchmark each new release to ensure that augmentations provide maximum speed.
- It **[works with popular deep learning frameworks](#i-want-to-know-how-to-use-albumentations-with-deep-learning-frameworks)** such as PyTorch and TensorFlow. By the way, Albumentations is a part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/).
- [**Written by experts**](#authors). The authors have experience both working on production computer vision systems and participating in competitive machine learning. Many core team members are Kaggle Masters and Grandmasters.
- The library is [**widely used**](#who-is-using-albumentations) in industry, deep learning research, machine learning competitions, and open source projects.
## Table of contents
- [Authors](#authors)
- [Installation](#installation)
- [Documentation](#documentation)
- [A simple example](#a-simple-example)
- [Getting started](#getting-started)
- [I am new to image augmentation](#i-am-new-to-image-augmentation)
- [I want to use Albumentations for the specific task such as classification or segmentation](#i-want-to-use-albumentations-for-the-specific-task-such-as-classification-or-segmentation)
- [I want to know how to use Albumentations with deep learning frameworks](#i-want-to-know-how-to-use-albumentations-with-deep-learning-frameworks)
- [I want to explore augmentations and see Albumentations in action](#i-want-to-explore-augmentations-and-see-albumentations-in-action)
- [Who is using Albumentations](#who-is-using-albumentations)
- [List of augmentations](#list-of-augmentations)
- [Pixel-level transforms](#pixel-level-transforms)
- [Spatial-level transforms](#spatial-level-transforms)
- [A few more examples of augmentations](#a-few-more-examples-of-augmentations)
- [Benchmarking results](#benchmarking-results)
- [Contributing](#contributing)
- [Comments](#comments)
- [Citing](#citing)
## Authors
[**Alexander Buslaev** — Computer Vision Engineer at Mapbox](https://www.linkedin.com/in/al-buslaev/) | [Kaggle Master](https://www.kaggle.com/albuslaev)
[**Alex Parinov** — Tech Lead at SberDevices](https://www.linkedin.com/in/alex-parinov/) | [Kaggle Master](https://www.kaggle.com/creafz)
[**Vladimir I. Iglovikov** — Staff Engineer at Lyft Level5](https://www.linkedin.com/in/iglovikov/) | [Kaggle Grandmaster](https://www.kaggle.com/iglovikov)
[**Evegene Khvedchenya** — Computer Vision Research Engineer at Piñata Farms](https://www.linkedin.com/in/cvtalks/) | [Kaggle Grandmaster](https://www.kaggle.com/bloodaxe)
[**Mikhail Druzhinin** — Computer Vision Engineer at ID R&D](https://www.linkedin.com/in/mikhail-druzhinin-548229100/) | [Kaggle Expert](https://www.kaggle.com/dipetm)
## Installation
Albumentations requires Python 3.6 or higher. To install the latest version from PyPI:
```
pip install -U albumentations
```
Other installation options are described in the [documentation](https://albumentations.ai/docs/getting_started/installation/).
## Documentation
The full documentation is available at **[https://albumentations.ai/docs/](https://albumentations.ai/docs/)**.
## A simple example
```python
import albumentations as A
import cv2
# Declare an augmentation pipeline
transform = A.Compose([
A.RandomCrop(width=256, height=256),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.2),
])
# Read an image with OpenCV and convert it to the RGB colorspace
image = cv2.imread("image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Augment an image
transformed = transform(image=image)
transformed_image = transformed["image"]
```
## Getting started
### I am new to image augmentation
Please start with the [introduction articles](https://albumentations.ai/docs/#introduction-to-image-augmentation) about why image augmentation is important and how it helps to build better models.
### I want to use Albumentations for the specific task such as classification or segmentation
If you want to use Albumentations for a specific task such as classification, segmentation, or object detection, refer to the [set of articles](https://albumentations.ai/docs/#getting-started-with-albumentations) that has an in-depth description of this task. We also have a [list of examples](https://albumentations.ai/docs/examples/) on applying Albumentations for different use cases.
### I want to know how to use Albumentations with deep learning frameworks
We have [examples of using Albumentations](https://albumentations.ai/docs/#examples-of-how-to-use-albumentations-with-different-deep-learning-frameworks) along with PyTorch and TensorFlow.
### I want to explore augmentations and see Albumentations in action
Check the [online demo of the library](https://albumentations-demo.herokuapp.com/). With it, you can apply augmentations to different images and see the result. Also, we have a [list of all available augmentations and their targets](#list-of-augmentations).
## Who is using Albumentations
<a href="https://www.lyft.com/" target="_blank"><img src="https://habrastorage.org/webt/ce/bs/sa/cebssajf_5asst5yshmyykqjhcg.png" width="100"/></a>
<a href="https://www.x5.ru/en" target="_blank"><img src="https://habrastorage.org/webt/9y/dv/f1/9ydvf1fbxotkl6nyhydrn9v8cqw.png" width="100"/></a>
<a href="https://imedhub.org/" target="_blank"><img src="https://habrastorage.org/webt/eq/8x/m-/eq8xm-fjfx_uqkka4_ekxsdwtiq.png" width="100"/></a>
<a href="https://recursionpharma.com" target="_blank"><img src="https://pbs.twimg.com/profile_images/925897897165639683/jI8YvBfC_400x400.jpg" width="100"/></a>
<a href="https://www.everypixel.com/" target="_blank"><img src="https://www.everypixel.com/i/logo_sq.png" width="100"/></a>
<a href="https://neuromation.io/" target="_blank"><img src="https://habrastorage.org/webt/yd/_4/xa/yd_4xauvggn1tuz5xgrtkif6lya.png" width="100"/></a>
#### See also:
- [A list of papers that cite Albumentations](https://albumentations.ai/whos_using#research).
- [A list of teams that were using Albumentations and took high places in machine learning competitions](https://albumentations.ai/whos_using#competitions).
- [Open source projects that use Albumentations](https://albumentations.ai/whos_using#open-source).
## List of augmentations
### Pixel-level transforms
Pixel-level transforms will change just an input image and will leave any additional targets such as masks, bounding boxes, and keypoints unchanged. The list of pixel-level transforms:
- [Blur](https://albumentations.ai/docs/api_reference/augmentations/transforms/#albumentations.augmentations.transforms.Blur)
- [CLAHE](https://albumentations.ai/docs/api_reference/augme
没有合适的资源?快使用搜索试试~ 我知道了~
Albumentations - 快速图像增强库和易于使用的包装其他库-python开发

共95个文件
py:46个
rst:13个
html:6个

需积分: 50 5 下载量 78 浏览量
2021-06-18
17:59:24
上传
评论
收藏 197KB ZIP 举报
温馨提示
基于高度优化的OpenCV库的快速扩充 超级简单但功能强大的界面,适用于不同的任务,如(分割,检测等) 易于定制 易于添加其他框架 相册 该库使用 HWC 格式的图像。 该库在大多数转换上都比其他库快。 基于 numpy、OpenCV,imgaug 从它们中挑选最好的。 简单、灵活的 API,允许在任何计算机视觉管道中使用该库。 大型、多样化的转换集。 易于扩展库以环绕其他库。 易于扩展到其他任务。 支持对图像、蒙版、关键点和边界框的转换。 支持 python 3.5-3.7 与 PyTorch 轻松集成。 从 Torchvision 轻松转移。 曾在 Kaggle、topcoder、CVPR、MICCAI 的许多 DL 比赛中获得最高成绩。 由 Kaggle 大师撰写。 目录 如何使用 Authors 安装 PyPI Conda 文档 像素级转换 空间级转换 从 torchvision 迁移到相册 基准测试结果 贡献 添加新转换 构建文档 评论 引用图书馆赢得的比赛 行业用户 如何使用 多合一展示笔记本- show.ipynb 分类 - example.
资源详情
资源评论
资源推荐
收起资源包目录




















































































































共 95 条
- 1

























龙猫美术的世界
- 粉丝: 26
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 2014版CAD操作教程.doc
- (源码)基于Arduino的Orbita50 Swiss Edition音乐硬件固件项目.zip
- 基于Matlab的ARIMA模型:自回归差分移动平均模型(p,d,q)的步骤与实现
- 网站制作推广策划书方案模板.docx
- 移动web技术.ppt
- 建设工程项目管理习题.doc
- 某年度中国软件产业高级管理人员培训班.pptx
- 网络营销策划的概念.doc
- 2023年广西三类人员安全继续教育网络考试试题及参考答案.doc
- 电子商务行业人力资源管理方案设计.doc
- 模块十设计网络营销渠道PPT课件.ppt
- 基于MATLAB的锅炉水温与流量串级控制系统的设计.doc
- 工程项目管理风险研究.doc
- 实验室项目管理知识计划书.doc
- 岩土工程CAD深基础支护.ppt
- MATLAB实现光子晶体滤波器:缺陷层折射率对中心波长偏移影响研究 实战版
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0