Graph Representation Learning.pdf
需积分: 0 186 浏览量
更新于2025-07-08
收藏 2.14MB PDF 举报
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this
kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks
to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in
numerous domains, including chemical synthesis, 3D vision, recommender systems, question
answering, and social network analysis.

xinghaoyan
- 粉丝: 125
最新资源
- 网络营销源码学习.docx
- 中国移动WAP业务应用程序接口规范.doc
- 通信网原理课程设计.doc
- 机电接口技术课程设计.doc
- FPGA实现Cameralink纯逻辑编码解码方案及其在k7z7v7a7系列产品的应用 - 工业相机
- 公司年度网络营销推广服务项目线上推广方案.pptx
- 考研十大热门专业深度分析之计算机应用技术.doc
- 网络营销-渠道策略.pptx
- 神经网络hopfield网络专家讲座.pptx
- 一线通设计方案小区网络监控.doc
- 论项目管理中的人力团队建设与绩效.doc
- 鼎信诺审计软件的四种取数方法.pptx
- 享受健康的网络交往-公开课用.ppt
- 别墅智能家居系统解决方案.doc
- 项目管理的专业化与职业化发展培训课件.ppt
- 自动化专业实习报告书.doc