MySQL Fabric 1.5

Abstract

MySQL Fabric is a system for managing a farm of MySQL servers. MySQL Fabric provides an extensible and
easy to use system for managing a MySQL deployment for sharding and high-availability.

This document describes MySQL Fabric, beginning with a short introduction, providing instructions on how to
download and install MySQL Fabric, and a quick-start guide to help you begin using and experimenting with
MySQL Fabric. Later sections provide details for MySQL Fabric-aware connectors.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL
Documentation Library.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Fabric, see this document for licensing information, including licensing information
relating to third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL Fabric, see this document for licensing information, including licensing information relating to
third-party software that may be included in this Community release.

Document generated on: 2017-07-17 (revision: 52970)

http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://downloads.mysql.com/docs/licenses/mysql-utilities-1.5-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysql-utilities-1.5-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
1 INtroduCtion 0 FADIICovuee et 1
1.1 FADIIC Prer@QUISITESciiitiieiiit ettt et e e e et e et e e e eaa s 1

N2 = o T (o O o] (o1 = o £SO 2

2 Installing and Configuring MYSQL FaDIICciiiiiiiiiiiii e 3
2.1 Downloading MYSQL FaDIICiiiiiiiieiiii e et e e 3

2.2 Installing MYSQL FaDIIC ...ttt 3

2.3 Configuring MYSQL FabIICceiiiiieiii et 3
2.3.1 Create the Associated MYSQL USEIScoouuiiiiiiiiiieiiiiie et e 4

2.3.2 ConfIQUIAtioN Fileoieiii e 7

2.3.3 Configuration File SECHONSiiiiiiiiiiiiii e 8

2.3.4 The Configuration Parameter (--Param)ccouuuiieiiiiiineeiiiie e 13

2.4 Starting and Stopping MySQL Fabric NOUESoiiiiiiiiiiiii e 13

2.5 Old CoNnfiQUration SYSTEIMcieiiiieiiiii ettt ettt e e e e e e eenaans 14

RO 10 Tod Q] - 1 ST 17
3.1 Example: Fabric and RepliCatioNooouiiiiiiiii e 17

3.2 Example: Fabric and Shardingoooouioiiii e 20
3.2.1 Introduction t0 SNATINGiiiiiiie e 21

3.2.2 ShardiNg SCENAIIOueiiiiii ettt et e e et e e et e e eeae e eeens 21

4 The Mysql Fabri C ULIILY ...t 27
4.1 GetliNG HEIP oot 27

4.2 DUMP COMIMANGS ... ietniitee ittt e e et e et e et e e et et aa e e ea e e et e e ean e aetn e ean e aenaeeenss 27

4.3 EVENE COMIMANGS ..ottt ettt ettt et ettt ettt ettt et e et et e et e e e aae e e eenans 29

4.4 GroupP COMMEBNTSuiiiiiie ittt ettt e et et b e et et e e et et e e e e eba s 29

4.5 Manage COMMANGScuuuiiiiniii e e et e et e et e e et e e et e e ean e e eat e eeaeaetnaaeenaaeennaaes 33

4.6 Provider COMMANGSuieiiiiiieiiiii ettt e e et e e et e et et e e ettt e e e e et e e e eebe e eeeeteaeeees 34

4.7 ROIE COMIMANGSeiitiietiiie ettt ettt ettt ettt e et e e e et et e e et e e e eab e e eenanns 35

4.8 SErvVer COMIMANGS ...couuuuiieittn ettt ettt ettt et ettt et e et et e et e et e aaer et e et aeeenna e eeennas 35

4.9 Sharding COMIMANGSuuiiiiiii ettt e et e et ettt e et eeeraa s 39

4.10 SNAPSNOt COMIMANDS ...oevuuiiiiiii ettt ettt ettt e et eeeneas 43

4.11 StatiStiCS COMMANTSeeitteeiiti ettt ettt e e e e et e e et e e e e enae e eeenaas 43

4.12 TRreat COMMANGSiiiiit ettt e et e et e et et e e et et e e e e et e e e eebe e e e eenaaeeenns 44

4.13 USEI COMMANGS ..evtueiiiiieteei ettt ettt et et b e et e et et e e et e et et e e e ena s 44

5 Fabric Utility ComMmMAaNd MALHXcoeuniiiiiii e e e e e e e e e e e eannas a7
B BACKING STOMEuniiiiiii ittt 53
6.1 Backing StOre TabIESouiiiiiiiii et 53

6.2 Protecting the BacKiNg STOTEc..uuiiiiiiiiiiiiii et e 56

7 Using MySQL Fabric with Pacemaker and COIOSYNCveiiiiiieiiiiiieeeiiiieeeeei et 57
4% [11 (o [¥ o1 1 o] o ISP SPP PR 57

7.2 PrE-TEQUISITESeeiiiiiit ettt ettt ettt et e et et e e e ennans 57

7.3 Target CONFIQUIATIONc.uuuiiiiii ettt ettt et e et e e e e e e e na s 58

7.4 Setting up and teSHING YOUT SYSTEIMiiiiiiiiiiii et 59
7.4.1 CoNfIQUIe NEIWOIKcoeitiiiiii et 59

7.4.2 INStall @ll PACKAGES ... et 59

7.4.3 CoNfigure DRBDceuiiiiiiiii e 60

7.4.4 Configure MYSQL SEIVET ..ottt 62

7.4.5 Configure MySQL FabriCiiiiii e 63

7.4.6 Configure Corosync and PacemMaKEroveiiiriieiiiiiiieeiiie e 64

7.5 Key administrative tasKSoiieiiiii e 67

8 Using Connector/Python with MySQL FabriCoiiiiiiiii e 69
8.1 Installing Connector/Python with MySQL Fabric SUPPOItc.uoveeiiiiiiieiiiiieeceieeeeiien 70

8.2 Requesting a Fabric CONNECHIONociiiiiieiiii et 70

8.3 Providing Information to Choose a MYSQL SEIVETiiiiiiiiiiiiiiiiieeeeiieeeee e 72

9 Using Connector/J with MySQL FabIiCoooiiii e 75
9.1 Installing Connector/J with MySQL Fabric SUPPOIToooiiiiiiiiiiie e 75

MySQL Fabric 1.5

9.2 Loading the Driver and Requesting a Fabric Connectionccoceiiiiiiiieiiii i, 75

9.3 Providing Information to Choose a MySQL SEIVETceviviiiiiiiiie e 76

9.4 MySQL Fabric Configuration for RUNNINg Samplescccoiviviiiiiiiiiii e 77

S TSI = {0 [TV T =) £ S 79

9.6 Running DemoNStration PrOGIamMSc..iiiiuiiiieeiiieei e e e e e e e e e e et e et e e aaeeeens 79

9.7 A Complete Example: Working with Employee Datacooceieeiiiiiiiiieiiieciiecee e 80

9.8 How Connector/J Chooses a MySQL SEIVETccouuiiiiiieii e 84

9.9 Using Hibernate with MySQL FabriCcoouiiiiiii e 84
9.10 Connector/J Fabric SUpport REfErENCEcciiuiiii e 87
9.10.1 CONNECLION PrOPEITIES ...uuiiiiiieii ettt e e e e e e e et e et e eaan s 87

9.10.2 FabricMySQLCONNECHON APloueiiicee e 88

10 Using Connector/Net with MySQL FabriCccouuiiiiii e 91
10.1 SyStEM REQUITEIMENTSiuuiiiii i e e et e e e e e e e e e e e et e et e e et e e et e e et e eaaneeeens 91

10.2 Set up the MySQL Fabric PIUGQINccoiiiiiie e e e e e e 91

10.3 USiNg MYSQL FabBIC GIOUPS ...cvvuiiiiiieeiii ettt ettt e et e e e e e e e e e et e et e e et eeaaeeeenns 93

10.4 Using Ranged Shardingioiiiiiiiiiiiiiiicci e e e e e e e e e e e et e et e eanaees 94

11 MySQL Workbench and MySQL Fabric Integrationcccoeeiiiiiiiiiciiie e 97
12 MySQL Fabric Frequently Asked QUESTIONScivuuiiiiiiiiiciie e e e e e e e e e e e e 99

Preface and Legal Notices

This document describes MySQL Fabric, a system for managing a farm of MySQL servers. MySQL
Fabric provides an extensible and easy to use system for managing a MySQL deployment for sharding
and high-availability.

Legal Notices

Copyright © 1997, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall

Access to Oracle Support

not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle

Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction to Fabric

Table of Contents

O = Yo o o (=T 1= o [0 1S (= 1
2 = o o @ o o7 =T o) 2

To take advantage of Fabric, an application requires an augmented version of a MySQL connector
which accesses Fabric using the XML-RPC protocol. Currently, Connector/Python and Connector/J are
fabric-aware.

Fabric manages sets of MySQL Servers that have Global Transaction Identifiers (GTIDs) enabled to
check and maintain consistency among servers. Sets of servers are called high-availability groups.
Information about all of the servers and groups is managed by a separate MySQL instance, which
cannot be a member of the Fabric high-availability groups. This server instance is called the backing
store.

Fabric organizes servers in groups (called high-availability groups) for managing different shards or
simply for providing high availability. For example, if standard asynchronous replication is in use, Fabric
may be configured to automatically monitor the status of servers in a group. If the current master in a
group fails, it elects a new one if a server in the group can become a master.

Besides the high-availability operations such as failover and switchover, Fabric also permits shard
operations such as shard creation and removal.

Fabric is written in Python and includes a special library that implements all of the functionality
provided. To interact with Fabric, a special utility named nysql f abr i c provides a set of commands
you can use to create and manage groups, define and manipulate sharding, and much more.

1.1 Fabric Prerequisites

Fabric is designed to work with MySQL servers version 5.6.10 and later. The nmysql f abri c utility
requires Python 2 (2.6 or later) and Connector/Python 1.2.1 or later.

You must have a MySQL instance available to install the backing store. This server must not be a
member of a Fabric group.

Note
@ The backing store must be a MySQL server 5.6 or later.

To utilize Fabric in your applications, you must have a Fabric-aware connector installed on the system
where the application is running. For more information about using a connector with Fabric, see the
appropriate connector-specific section (Chapter 8, Using Connector/Python with MySQL Fabric,
Chapter 9, Using Connector/J with MySQL Fabric).

In summary, the following items indicate the prerequisites for using MySQL Fabric:

» MySQL Server 5.6.10 or later for MySQL servers managed by Fabric. MySQL Server requirements:
gtid_mode (GTID), bin_log (binary logging), and log_slave_updates enabled, with server_id properly
configured.

* MySQL server 5.6.x or later for the backing store.
» Python 2 (2.6 or later) for the nysql f abr i c utility.

» A Fabric-aware connector to use Fabric in applications. Permitted connectors and versions are:

Fabric Concepts

e Connector/Python 1.2.1 or later

e Connector/J 5.1.27 or later

1.2 Fabric Concepts

This section describes some of the concepts used in Fabric.

A high-availability group, or simply group, is a collection of servers. It is used to associate the servers
in a set. This association may be a set of replication-enabled servers, the servers participating in a
sharding solution, and so forth.

A group identifier is the name we give a group or members of the group. A group identifier is a name
that matches the regular expression [a- zA- Z0- 9_-] +. Examples of legal identifiers are ny_gr oup,
enpl oyees, and shar d1.

A global group stores all updates that must be propogated to all shards that are part of a sharding
scheme.

A node or fabric node is an instance of the Fabric system running on a server. To use the features of
Fabric, at least one Fabric node must be running.

Sharding refers to the Fabric feature that permits the distribution of data across several servers. There
are many uses of sharding but the most effective use of sharding enables distributing the work of
writing across several servers for improved write speeds.

A shard is a horizontal partition or segment of data in a table.

Primary refers to a member of a group that is designated as master in the sense that it can accept
read-write transactions.

Secondary refers to a member of a group that can be a candidate to replace the master during
switchover or failover and that can accept read-only transactions.

Chapter 2 Installing and Configuring MySQL Fabric

Table of Contents

2.1 Downloading MYSQL FaDIICciiiitiieiiiii ettt e e et e et e e e et e e e e e eeen 3
2.2 InStalling MYSQL FaADIICiiiiiiieeeeei ettt e e ettt e e e et e e e nb e aees 3
2.3 Configuring MYSQL FabIICceeeeiieiiii ettt et e e 3
2.3.1 Create the Associated MYSQL USEISoouuuiiiiiiiieiiiii et 4
2.3.2 ConfIQUIALION FlE e 7
2.3.3 Configuration File SECHONSiiiiiiiiii i e eaeans 8
2.3.4 The Configuration Parameter (--Param)ccoouuuieeermineeeiiieeeeri e e eeai e eeniaeeeen 13
2.4 Starting and Stopping MySQL Fabric NOUESoooiuiiiiiiiiiii e 13
2.5 Old CoNfIQUIrAtION SYSTEIMiiiiiieiiiii ettt ettt e e et e et et et et e e eba e e eenan s 14

To use MySQL Fabric, you must have a set of MySQL server instances running MySQL 5.6.10 or
higher. One server is required for the backing store and at least one server must be added to a group.
To use the replication features of MySQL Fabric, a replication topology of a master and at least one
slave is required. To use the sharding features of MySQL Fabric, you should have the number of
servers corresponding to the depth of the shards (the number of segments).

documented here, and the old system is documented under Section 2.5, “Old

Note
@ The configuration system changed in Fabric 1.5.5. The current system is
Configuration System”.

For instructions on how to download and install MySQL server, see the online MySQL reference
manual (Installing and Upgrading MySQL).

2.1 Downloading MySQL Fabric

Download a version of MySQL Fabric from the MySQL Developer Zone website (http://dev.mysqgl.com/
downloads/utilities/). Packaged downloads are available for a variety of servers. Download the package
that matches your platform and extract the files.

The above website also provides the MySQL Fabric-aware connectors. Download the connector you
want to use with a MySQL Fabric application. For more information about how to install and get started
using MySQL Fabric in your applications, see the appropriate connector-specific section (Chapter 8,
Using Connector/Python with MySQL Fabric, Chapter 9, Using Connector/J with MySQL Fabric).

2.2 Installing MySQL Fabric

To install MySQL Fabric, install MySQL Utilities 1.5.6. For more information, see How to Install MySQL
Utilities.

2.3 Configuring MySQL Fabric

Configuring MySQL Fabric requires creating separate MySQL users to access the backing store and
managed MySQL servers, and editing the configuration file with the MySQL user details for all of these
users.

Each managed MySQL Server has the following requirements: gtid_mode (GTID), bin_log (binary
logging), and log_slave updates enabled, with server_id properly configured.

about the previous configuration system, see Section 2.5, “Old Configuration

Note
@ The configuration system changed in MySQL Fabric 1.5.5. For information
System”.

http://dev.mysql.com/doc/refman/5.6/en/installing.html
http://dev.mysql.com/downloads/utilities/
http://dev.mysql.com/downloads/utilities/
http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysql-utils-install.html
http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysql-utils-install.html

Create the Associated MySQL Users

2.3.1 Create the Associated MySQL Users

Fabric uses four different types of users, each with a different set of required privileges.

Note
@ The backup and restore users were added in Fabric 1.5.5.

» Backing store user: stores Fabric specific information, and is only created on the Fabric backing
store MySQL server. For additional information, see Chapter 6, Backing Store

e Server user: accesses the managed MySQL servers, and is created on each managed MySQL
server.

» Backup user: executes backup operations, such as nysql dunp, and is created on each managed
MySQL server.

» Restore user: executes restore operations that typically use the nmysql client, and is created on
each managed MySQL server.

Privileges

It is possible to use the same MySQL account for the server user, backup user, and restore user, but
in this case the user would have the sum of privileges of the three users. This would result in a very
powerful user and is therefore not recommended for production use.

However, for a quick and simple temporary trial, it may be easiest to set the users for all accounts
using the same user name and password, such as root.

The Backing Store (Fabric) User

The first thing you must have is a user account on the MySQL server that you plan to use for your
backing store. The user account information is stored in the Fabric configuration file.

The backing store database and its associated user are defined under the [storage] using user for the
user name and password as the password.

The Fabric user account on the backing store requires the following privileges on the backing store

database:

ALTER - alter sone database objects
CREATE - create nost database objects
CREATE VI EW - create views

DELETE - delete rows

DROP - drop nost database objects
EVENT - manage events

REFERENCES - foreign keys

| NDEX - create indexes

| NSERT - insert rows

SELECT - select rows

UPDATE - update rows

Example statements to create this user, to be executed on the backing store MySQL server:

example is named mysql_fabric. In other words, do not execute CREATE

Note
@ MySQL Fabric creates this database based on f abri c. cf g, which in our
database mysql_fabric; here.

Create the Associated MySQL Users

CREATE USER 'fabric_store' @I ocal host'
| DENTI FI ED BY ' secret';

GRANT ALTER, CREATE, CREATE VI EW DELETE, DROP, EVENT,
I NDEX, | NSERT, REFERENCES, SELECT, UPDATE ON nysql fabric.*
TO 'fabric_store' @l ocal host';

Note
@ The "REFERENCES" privilege is only required when working with MySQL 5.7
and above. MySQL Fabric does not check for this privilege on earlier versions.

For additional information about using and setting up the backing store, see Chapter 6, Backing Store.

The Server User

MySQL Fabric uses the server user account to access all MySQL servers that it manages. In other
words, this user must be created on all managed MySQL servers.

The server account is defined under the [servers] section using user for the user name and password
as the password.

The Fabric server user account on the managed MySQL servers requires the following privileges in

global scope:

DELETE - prune_shard

PROCESS - list sessions to kill
RELQAD - RESET SLAVE

REPLI CATI ON CLI ENT - SHOW SLAVE STATUS
REPLI CATI ON SLAVE SHOW SLAVE HOSTS

The Fabric server user account on the managed MySQL servers requires the following privileges on
mysql_fabric.*:

ALTER - alter sone database objects
CREATE - create nost database objects
DELETE - delete rows

DROP - drop nost database objects

| NSERT - insert rows

SELECT - select rows

UPDATE - update rows

Example statements to create the server user, to be executed on each managed MySQL server:

CREATE USER 'fabric_server' @l ocal host'
| DENTI FI ED BY 'secret';

GRANT DELETE, PROCESS, RELOAD, REPLI CATI ON CLI ENT,
REPL| CATI ON SLAVE, SELECT, SUPER, TRI GGER ON *.*
TO 'fabric_server' @I ocal host"' ;

GRANT ALTER, CREATE, DELETE, DROP, |NSERT, SELECT, UPDATE
ON nysqgl _fabric.* TO 'fabric_server' @l ocal host";

The Backup User

If you want to use sharding, or clone a MySQL server with the intention to add it to a High-Availability
(HA) group, then you must define restore and backup users. Like the server user, these users must be
created on all managed servers.

The backup account is defined under the [servers] section using backup_user for the user name and
backup_password as the password.

Create the Associated MySQL Users

The backup account on the managed MySQL servers requires the following privileges in global scope if
nysql dunp is used:

EVENT - show event information

EXECUTE - show routine information inside views
REFERENCES - foreign keys

SELECT - read data

SHOW VI EW - SHOW CREATE VI EW

TRI GGER - show trigger information

Example statements to create the backup user, to be executed on each managed MySQL server:
CREATE USER 'fabric_backup' @I ocal host'
| DENTI FI ED BY ' secret";

GRANT EVENT, EXECUTE, REFERENCES, SELECT, SHOW VI EW TRI GGER ON *.*
TO 'fabric_backup' @Il ocal host';

Note
@ The "REFERENCES" privilege is only required when working with MySQL 5.7
and above. MySQL Fabric does not check for this privilege on earlier versions.

The Restore User

If you want to use sharding, or clone a server with the intention to add it to a High-Availability (HA)
group, then you must define restore and backup users. Like the server user, these users must be
created on all managed servers.

The restore account is defined under the [servers] section using restore_user for the user name and
restore_password as the password.

The restore account on the managed MySQL servers requires the following privileges in global scope if
mysqldump is used:

ALTER - ALTER DATABASE

ALTER ROUTI NE - ALTER { PROCEDURE| FUNCTI ON}

CREATE - CREATE TABLE

CREATE ROUTI NE - CREATE { PROCEDURE| FUNCTI ON}

CREATE TABLESPACE - CREATE TABLESPACE

CREATE VI EW - CREATE VI EW

DROP - DROP TABLE (used before CREATE TABLE)

EVENT - DROP/ CREATE EVENT

| NSERT - wite data

LOCK TABLES - LOCK TABLES (--single-transaction)

REFERENCES - Create tables with forei gn keys

SELECT - LOCK TABLES (--single-transaction)

SUPER - SET @@BESSI ON. SQL_LOG BIN = 0

TRI GGER - CREATE TRl GGER
Note

S Although the "CREATE TABLESPACE" and "REFERENCES" privileges are

only required when working with MySQL 5.7 and above, MySQL Fabric still
checks for them to help simplify the upgrade process to MySQL 5.7.

Example statements to create the restore user, to be executed on each managed MySQL server:

CREATE USER 'fabric_restore' @I ocal host'
| DENTI FI ED BY ' secret';

GRANT ALTER, ALTER ROUTI NE, CREATE, CREATE ROUTI NE, CREATE TABLESPACE, CREATE VI EW
DROP, EVENT, |NSERT, LOCK TABLES, REFERENCES, SELECT, SUPER,
TRIGGER ON *.* TO 'fabric_restore' @l ocal host';

Configuration File

2.3.2 Configuration File

The location of the MySQL Fabric configuration file varies depending on the operating system it is
installed on and how you installed it. The table below lists the default configuration file locations for pre-
built packages from http://dev.mysql.com/downloads/utilities/. Alternatively, the optional - - confi g
option accepts to use a path to a Fabric configuration file, and if defined, the file is loaded and used
instead of the default configuration file location.

Table 2.1 Default MySQL Fabric configuration file location

Platform

Package

Location

Microsoft Windows

mysql-utilities-1.5.6-win32.msi

UTI LI TI ES_| NSTALLDI Rletc/
mysql/fabric.cfg

Oracle Linux 6

utilities-1.5.6-1.el6.noarch.rpm

Ubuntu Linux 14.04 mysq|l- letc/nysql/fabric.cfg
utilities_1.5.6-1ubuntu14.04_all.deb

Debian Linux 6.0 mysq|l- letc/nysql/fabric.cfg
utilities_1.5.6-1debian6.0_all.deb

Red Hat Enterprise Linux 6 / mysql- letc/nysql/fabric.cfg

OSs X

mysql-utilities-1.5.6-0sx10.9.dmg

/etc/nysql/fabric.cfg

Modify the configuration file and include the users and passwords defined in the previous step
(Section 2.3.1, “Create the Associated MySQL Users”), here is an example Fabric configuration file:

[DEFAULT]
prefix = /usr/|oca

sysconfdir = /usr/local/etc

logdir = /var/log

[st or age]

address = | ocal host: 3306
user = fabric_store
password = secret

dat abase = nysql _fabric

aut h_pl ugin = nysqgl _nati ve_password

connection_tineout = 6
connection_attenpts = 6
connection_delay = 1

[server s]
user = fabric_server
password = secret

backup_user = fabric_backup

backup_password = secret

restore_user = fabric_restore

restore_password = secret
unreachabl e_tineout = 5

[protocol . xm r pc]

address = | ocal host: 32274
threads = 5

user = admin

password = secret

di sabl e_aut henti cation = no

realm= MySQL Fabric
ssl _ca =

ssl _cert =

ssl _key =

[protocol . nysql]
address = | ocal host: 32275

user = admin
password = secret

di sabl e_aut henti cation = no

http://dev.mysql.com/downloads/utilities/

Configuration File Sections

ssl _ca =
ssl _cert =
ssl _key =

[execut or]
executors = 5

['oggi ng]
| evel = | NFO
url = file:///var/log/fabric.!log

[shar di ng]
nmysql dunp_program = /usr/ bi n/ mysql dunp
nmysql cl i ent _program = /usr/bi n/ nysq

[statistics]
prune_time = 3600

[failure_tracking]
notifications = 300
notification_clients = 50
notification_interval = 60
failover_interval =0
detections = 3
detection_interval = 6
detection_tinmeout = 1
prune_time = 3600

[connect or]
ttl =1

Each section has one or more variables defined that provide key information to the MySQL Fabric
system libraries. You might not have to change any of these variables other than the users and
passwords. For more information on the sections and variables in the configuration file, see
Section 2.3.3, “Configuration File Sections”.

2.3.3 Configuration File Sections

The MySQL Fabric configuration file contains all the information necessary to run the MySQL Fabric
utility. In addition, it serves as a configuration file for the utilities from within MySQL Fabric.

Each section has one or more variables defined that provide key information to the MySQL Fabric
system libraries.

restore_user, restore_password, backup_user, and backup_password under the
[servers] section to configure users for the backup and restore utilities, such as

Note
@ The [client] section was removed in MySQL Fabric 1.5.5. Instead, use the
nmysql dunp and the nysql client.

2.3.3.1 Section DEFAULT

The DEFAULT section contains information on the installation paths for MySQL Fabric. This section is
generated as part of the installation and should normally not be modified.

prefix The installation prefix used when installing the mysql . f abri c
package and the binaries.

sysconfdir The location of the system configuration files. Normally located in
the et c directory under the directory given in pr ef i x, but in some
situations this might be different.

[ogdir Configures the directory where log files are located by default.
Normally, the logging URL contains the absolute path, but in the
event that the path is relative, it is relative to this directory.

Configuration File Sections

2.3.3.2 Section storage

This section contains information that the MySQL Fabric node uses for the connection to the backing
store. For more information on the backing store, see Chapter 6, Backing Store.

addr ess

user

password

dat abase

aut h_pl ugi n

connecti on_ti meout

connection_attenpts

connecti on_del ay

2.3.3.3 Section servers

This is the address of the backing store in the form host : port.
The port is optional and if not provided, defaults to 3306.

User name to use when connecting to the backing store.

The password to use when connecting to the backing store. If no
password option is in the configuration file, a password is required
on the terminal when the MySQL Fabric node is started. Although it
is possible to set an empty password by not providing a value to the
option, it is not recommended.

The database where the tables containing information about the
MySQL Fabric farm is stored, typically f abri c.

The authentication plugin to use when connecting to the backing
store. This option is passed to the connector when connecting to the
backing store. For more information on authentication plugins, see
Connector/Python Connection Arguments.

Timeout for the connection to the backing store, in seconds. This
option is passed to the connector when connecting to the backing
store. This is the maximum amount of time that MySQL Fabric waits
for access to the backing store to complete before aborting. For
more information on authentication plugins, see Connector/Python
Connection Arguments.

The number of attempts to reconnect to the backing store before
giving up. This is the maximum number of times MySQL Fabric
attempts to create a connection to the backing store before aborting.
The default is O retries.

The delay between attempts to connect to the backing store in
seconds. The default is O seconds.

This section contains information that MySQL Fabric uses to connect to the servers being managed.

Note
@ The backup_user, backup_password, restore_user, and restore_password
options were added in MySQL Fabric 1.5.5.

user
password
backup_user

backup_password

restore_user

restore_password

unreachable_timeout

User name to use when connecting to the managed server.
Password to use when connecting to the managed servers.
User name to use when backing up the MySQL server.

Password to use when backing up the MySQL servers with the
backup_user user.

User name to use when restoring the MySQL server.

Password to use when restoring the MySQL servers with the
restore_user user.

Used for the connection timeout when checking faulty servers,
or servers that are new to the farm. Hence, for servers that can

http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

Configuration File Sections

2.3.3.4 Section protocol.xmlrpc

potentially be unreachable. Defaults to 5, can be a value between
1-60.

This section contains information about how the client connects to a MySQL Fabric node and
configuration parameters for the XML-RPC protocol on the server.

address

threads

user

password

di sabl e_aut henti cati on

realm
ssl_ca
ssl_cert
ssl_key

2.3.3.5 Section protocol.mysql

Host and port of XML-RPC server. The host is only used by the
client when connecting to the MySQL Fabric node, but the port is
used by the server when starting the protocol server and by the
client when reading how to connect to the XML-RPC server. The
port number is typically 32274, and the host is typically | ocal host .

Number of threads that the XML-RPC server uses for processing
requests. This determines the number of concurrent requests that
MySQL Fabric accepts.

User that the client uses to connect to the XML-RPC server.

Password used when the client connects to the server. If no
password is provided, the client requests a password on the
command-line.

Whether to disable authentication or not. Disabling authentication
can be useful when experimenting in a closed environment, it is not
recommended for normal usage. Alternatives are yes or no and are
case-insensitive.

The realm (as defined in RFC 2617) the XML-RPC server identifies
as when authenticating.

Path to a file containing a list of trusted SSL certification authorities
(CAs).

The name of the SSL certificate file to use for establishing a secure
connection.

The name of the SSL key file to use for establishing a secure
connection.

This section contains information about how the client connects to a MySQL Fabric node using the

MySQL Client/Server protocol.

address

user

password

di sabl e_aut henti cati on

ssl_ca

Host and port of a MySQL Fabric node. The port number is typically
32275, and the host is typically | ocal host .

User that the client uses to connect to the MySQL Fabric node.

Password used when the client connects to the MySQL Fabric node.
If no password is provided, the client requests a password on the
command-line.

Whether to disable authentication or not. Disabling authentication
can be useful when experimenting in a closed environment, it is not
recommended for normal usage. Alternatives are yes or no and are
case-insensitive.

Path to a file containing a list of trusted SSL certification authorities
(CAs).

10

Configuration File Sections

ssl_cert The name of the SSL certificate file to use for establishing a secure
connection.

ssl_key The name of the SSL key file to use for establishing a secure
connection.

2.3.3.6 Section executor

This section contains parameters to configure the executor. The executor executes procedures in a
serial order, which guarantees that requests do not conflict. The requests received are mapped to
procedures which can be executed directly or scheduled through the executor. Procedures scheduled
through the executor are processed within the context of threads spawned by the executor. Usually,
read operations are immediately executed by the XML-RPC session thread and write operations are
scheduled and executed through the executor.

executors The number of executor threads that the executor uses when
processing requests.

working_directory The directory Fabric uses by default to store files. If the option is not
found, the working directory is the directory from where the process
was launched.

Note
@ This option was added in Fabric 1.5.7.

MySQL Fabric logs information about its activities to the standard output when started as a regular
process. However, when started as a daemon, it writes information to a file configured by the the option
Fabric URL used for logging.

2.3.3.7 Section logging

level The log level to use when generating the log. Acceptable values
are CRI Tl CAL, ERROR, WARNI NG, | NFO, and DEBUG. The default is
I NFQ.

url The URL to use for logging. Supported protocols are currently fi | e

and sysl og. The fi | e protocol creates a rotating file handler,
while the sysl| og protocol logs messages using the system logger
sysl ogd .

The f i | e handler accepts either a relative path or an absolute path.
If a relative path is provided, it is relative to Configure default log
directory.

The sysl og handler accepts either a path (for example

sysl og:/// dev/ | og) or a hosthame and an optional port

(for example, sysl og: / /| ocal host : 555, and sysl og: //

ny. exanpl e. con). If no port is provided, it defaults to 541, which
is the default port for the syslog daemon.

2.3.3.8 Section sharding

To perform operations such as moving and splitting shards, MySQL Fabric relies on the nmysql dunp
and nysql client programs. These programs can be installed in different locations and if they are not in
the path for the MySQL Fabric node, this section configures where they can be found.

mysqldump_program Path to the mysql dunp program.

mysqlclient_program Path to the mysql program.

11

Configuration File Sections

2.3.3.9 Section statistics

Connectors and other external entities log any errors while accessing servers so that MySQL Fabric
can monitor server health and act accordingly. For example, MySQL Fabric promotes a new master
after receiving not i f i cat i ons from the number of clients configured in noti fi cati on_clients)
within the time interval configured in not i fi cati on_i nt erval . If a server is considered unstable
but it is not a master, it is simply marked as faulty. To avoid making the system unstable, a new master
can only be automatically promoted after the f ai | over _i nt er val has been elapsed since the last
promotion. In order to ease the adoption of MySQL Fabric, a built-in failure detector is provided. If

the failure detector is enabled to monitor a group, a new master is promoted after 3 failed successive
attempts to access the current master within the time interval configured in f ai | over _i nt erval .
The failure detection routine tries to connect to servers in a group and uses the value configured in
detection_tinmeout astimeout.

prune_time How often the internal event log is pruned, in seconds and also the
age of events in the event log that is used to present statistics.

notifications Number of issues before the server is considered unstable.

notification_clients Number of different sources that should report issues on a server
before it is considered unstable.

notification_interval Amount of time in seconds that is used when deciding if a server is
unstable. Issues older than this are not considered when deciding.

failover_interval Minimum time in seconds between subsequent automatic
promotions. This parameter is used to prevent the system entering a
sequence of promotions that could disable the system.

detections Number of successive failed attempts to contact the server after
which the built-in failure detector considers the server unstable.

detection_timeout Timeout in seconds used when contacting the server. If the server
does not respond within this time period, it is recorded as a failed
attempt to contact the server.

prune_time Maximum age in seconds for reported issues in the error log. Issues
older than this are removed from the error log.

2.3.3.10 Section failure_tracking

This section contains parameters for the failure management system.

notifications The notification threshold. If more than this number of notifications
arrive in the notification interval and the number of distinct
notification clients are over the notification client threshold, the
server is considered dead and failover is triggered.

notification_clients The number of distinct notification clients that need to report. If
more than this number of distinct notification clients are over the
notification client threshold and the number of notifications above
the notification threshold arrive in the notification interval, the server
is considered dead and failover is triggered.

notification_interval The notification interval in seconds. Only notifications arriving within
this time frame can trigger a failover.

failover_interval The minimum interval between failover operations in seconds. In
order to avoid making the system unstable, failover operations are
not triggered unless at least this much time has expired since the
last failover.

12

The Configuration Parameter (--param)

detections This parameter is for the built-in failure detector. If more than this
number of failures to contact the server occurs during the detection
interval, the server is considered unstable and a failover is triggered.

detection_interval This parameter configures the detection interval for the built-in
failure detector, in seconds.

detection_timeout This parameter configures the detection timeout used when
attempting to contact the servers in the group.

prune_time This is the maximum age of events in the failure detector's error log
and is also the interval for how often the error log is pruned.

2.3.3.11 Section connector

Connectors that are MySQL Fabric-aware contact MySQL Fabric to fetch information on groups,
shards, and servers, and then cache the results locally for a time period to improve performance. This
section contains configuration parameters passed to the connectors.

ttl The Time To Live (TTL), measured in seconds, is passed together
with other information to the connector. This is used by the connector
to invalidate the caches, and reload them from a MySQL Fabric node,
after the TTL has expired.

2.3.4 The Configuration Parameter (--param)

The - - par amoption allows you to override configuration options at runtime. The syntax is - -
par anrsecti on. opti on=val ue. For example:

shel | > nysql fabric manage setup --paranrstorage. user=fabric_store --paramstorage. passwor d=secr et
shel | > nysql fabric --paranmrstorage. user=fabric_store --paranrstorage. passwor d=secret manage setup

shel | > nysql fabri c manage setup --paranrstorage. addr ess=| ocal host: 13000 \

- - par amest or age. user =r oot - - par am=pr ot ocol . xm r pc. passwor d=secr et

For additional information about the available options, see Section 2.3.2, “Configuration File”.

2.4 Starting and Stopping MySQL Fabric Nodes

To start or stop MySQL Fabric nodes, use the nysql f abri ¢ command (see Chapter 4, The
nysql fabri c Utility). This command requires that MySQL Fabric and Connector/Python be installed,
and assumes that you have set up the backing store.

The following command starts a MySQL Fabric node and should be run on one of the servers listed in
the [prot ocol . xm r pc] section in the configuration file.
shel | > nysql fabric manage start

This command starts a MySQL Fabric node on the machine where it is executed and prints the log

to standard output. Thus, this is the machine where you installed the MySQL Fabric and Connector/
Python software and is also the machine listed in the configuration file [pr ot ocol . xni r pc] section.
To follow the examples in the quick-start section, you must use | ocal host for the host name.

To put the MySQL Fabric node in the background, add the - - daenoni ze option. However, this diverts
the log to the syslog file. While experimenting with MySQL Fabric, you may find it more convenient not
to use - - daenoni ze so that the log is written to your terminal.

Use this command to stop a MySQL Fabric node:

shel | > nysqgl fabri c manage stop

13

Old Configuration System

This command contacts the MySQL Fabric server running at the address mentioned in the
[protocol . xm r pc] section and instructs it to stop.

2.5 Old Configuration System

Important

version 1.5.5. The previous configuration documentation is archived here for

A This documentation describes the MySQL Fabric configuration before
informational and upgrade purposes.

Configuring MySQL Fabric requires creating a MySQL user to access the backing store, and editing
the configuration file with the MySQL user details. This section assumes you have already set up the
backing store. See Chapter 6, Backing Store for more information.

Create a MySQL User

The first thing you must have is a user account on the MySQL server that you plan to use for your
backing store. The user account information is stored in the configuration file.

The user account must have full privileges for the database named f abr i c. To create the user and
grant the privileges needed, use the following statements:

CREATE USER 'fabric' @Il ocal host' | DENTIFIED BY 'secret';
GRANT ALL ON fabric.* TO 'fabric' @Il ocal host';

In the preceding example, substitute a password of your choice (replace ' secret'). Also, if you
are going to run MySQL Fabric on a host other than where the backing store resides, substitute the
"l ocal host" for the host name.

MySQL Fabric uses the same user account, who must have all privileges on all databases, to access
all MySQL servers that it manages. The user and password are defined in the configuration file

as shown below. To create this user and grant all the necessary privileges, execute the following
command on all MySQL servers:

CREATE USER 'fabric' @Il ocal host' | DENTIFI ED BY 'secret';
GRANT ALL ON *.* TO 'fabric' @I ocal host";

In the preceding example, substitute a password of your choice (replace ' secret'). Also, if you are
going to run MySQL Fabric on a host other than where the managed MySQL servers reside, substitute
the ' | ocal host"' for the Fabric's host name.

Configuration File

The next step is to modify the configuration file with the user and password we defined in the previous
step. Open the configuration file:

MySQL Fabric configuration file location

Table 2.2 MySQL Fabric configuration file location

Platform Package Location
Microsoft Windows mysql-utilities-1.5.6-win32.msi UTI LI TI ES_| NSTALLDI Rletc/
mysql/fabric.cfg
Ubuntu Linux 14.04 mysq|l- letc/nysql/fabric.cfg
utilities_1.5.6-1ubuntu14.04_all.deb
Debian Linux 6.0 mysql- letc/nysql/fabric.cfg
utilities_1.5.6-1debian6.0_all.deb

14

MySQL Fabric configuration file location

Platform Package Location
Red Hat Enterprise Linux 6 / mysql- letc/nysql/fabric.cfg
Oracle Linux 6 utilities-1.5.6-1.el6.noarch.rpm

The following shows the content of the configuration file and the modifications necessary. In the
[st or age] section, store the user and password of the user created in the previous step.

[DEFAULT]

prefix = /usr/loca
sysconfdir = /usr/local/etc
logdir = /var/log

[st orage]

address = | ocal host: 3306

user = fabric

password = secret

dat abase = fabric

aut h_plugin = nysqgl _nati ve_password
connection_tinmeout = 6
connection_attenpts = 6
connection_delay = 1

[servers]

user = fabric
password =
backup_user = fabric
backup_password =
restore_user = fabric
restore_password =
unr eachabl e_ti meout

1
()]

[protocol . xm r pc]
address = | ocal host: 32274

threads = 5
user = admn
password =

di sabl e_aut hentication = no
realm= MySQ. Fabric

ssl _ca =
ssl _cert =
ssl _key =

[protocol . nysql]
address = | ocal host: 32275

user = admin

password =

di sabl e_aut hentication = no
ssl _ca =

ssl _cert =

ssl _key =

[execut or]
executors = 5

[1 oggi ng]
| evel = I NFO
url = file:///var/log/fabric.log

[shar di ng]
nysql dunp_program = /usr/bi n/ nysqgl dunp
nysql cl i ent _program = /usr/bin/ nysq

[statistics]
prune_time = 3600

[failure_tracking]
notifications = 300
notification_clients = 50
notification_interval = 60

15

MySQL Fabric configuration file location

failover_interval =0
detections = 3
detection_interval = 6
detection_tinmeout = 1
prune_time = 3600

[connect or]
ttl =1

Each section has one or more variables defined that provide key information to the MySQL Fabric
system libraries. You should not have to change any of these variables other than the user and
password for the backing store (in the st or age section).

16

Chapter 3 Quick Start

Table of Contents

3.1 Example: Fabric and RePlCAIONoiiiniiiii e e e e e e e e 17
3.2 Example: Fabric and Shardingcoouuiiiiiei e 20
3.2.1 INtroduction t0 ShardiNgioiiiiiiiii e e e 21
I S| T T o [To TS o =1 o - T [R 21

This section demonstrates how to get started using MySQL Fabric. Two examples are included in this

section: one for using MySQL Fabric with replication to demonstrate how Fabric reduces the overhead
of directing reads and writes from applications, and another showing how Fabric makes using sharding
much easier.

If you have not installed and configured Fabric, please refer to the previous sections before proceeding
with the examples.

3.1 Example: Fabric and Replication

This section presents a quick start for using MySQL replication features in Fabric. To run this example,
you should have four server instances (running MySQL version 5.6.10 or later). The commands in this
example are executed on the same server host as the backing store (which happens to be the same
host where Fabric was installed). You must also have a Fabric node started on that host.

The replication features in Fabric focus on providing high availability. While these features continue to
evolve, the most unique feature of Fabric replication is the ability to use a Fabric-aware connector to
seamlessly direct reads and writes to the appropriate servers.

This redirection is achieved through the use of one of the central concepts in Fabric: a high-
availability group that uses a high-availability solution for providing resilience to failures. Currently, only
asynchronous primary backup replication is supported. As long as the primary is alive and running, it
handles all write operations. Secondaries replicate everything from the primary to stay up to date and
might be used to scale out read operations.

Creating a High-Availability Group

The first step consists of creating a group, here designated my_gr oup. After doing so, you can add
servers to the group. In this case, we add three servers, | ocal host: 3307, | ocal host : 3308, and
| ocal host : 3309.

Fabric accesses each added server using the user and password provided in the configuration file to
guarantee that they are alive and accessible. If these requirements are not fulfilled, the operation fails
and the server is not added to the group.

(GTID), bin_log (binary logging), and log_slave_updates enabled, with server_id

Note
@ Each managed MySQL Server has the following requirements: gtid_mode
properly configured.

The following demonstrates the commands to execute these steps.

shel | > nysql fabric group create my_group

Procedure :
{ uuid = d4e60ed4- f d36- 4df 6- 8004- d034202¢3698,
fini shed = True,
success = True,
return = True,
activities =
}

17

Promoting and Demoting Servers

shel | > nysql fabric group add ny_group | ocal host: 3307

Pr ocedur e

{ uuid = 6a33ed29- ccf 8- 437f - b436- daf 07db7alf c
fini shed = True
success = True,
return = True,

activities

shel | > nysql fabric group add ny_group | ocal host: 3308

Pr ocedur e

{ uuid = 6892bc49- 3ab7- 4bc2-891d- 57c4al1577081
fini shed = True
success = True,
return = True,

activities

shel | > nysql fabric group add ny_group | ocal host: 3309

Pr ocedur e
{ uuid = 7943b27f - 2da5- 4dcf - ala4- 24aed8066bb4
fini shed = True
success = True,
return = True,
activities =
}

To show information about the set of servers in a group, use this command:

shel | > nysql fabric group | ookup_servers ny_group

To get detailed information about the group health, use this command:

shel | > nysql fabric group health my_group

Promoting and Demoting Servers

After executing the steps in setting up a high-availability group, Fabric does not become aware of
any replication topology that was already in place. It is necessary to promote one of them to primary
(that is, master) and make the remaining servers secondaries (that is, slaves). To do so, execute this
command:

shel | > nysql fabric group pronote my_group

If there is a primary in a group, any server added subsequently is automatically set as secondary.
Setting a different server as primary can be done through the same command, which demotes the
current primary and elects a new one. If the current primary has failed, the same command (which can
be triggered either manually or automatically) can be used to elect a new one.

status in one step. The faulty server status must first be changed to the "spare"
status. For example, use nysql f abric server set_status server-

Note
@ A server marked as "faulty” cannot be promoted to a secondary or primary
addr ess spare.

Activating or Deactivating a Failure Detector

If the primary fails, you may want to automatically promote one of the secondaries as primary and
redirect the remaining secondaries to the new primary. To do this, execute the following command:

shel | > nysql fabric group activate ny_group

If the failure detector discovers that a primary has crashed, it marks it as faulty and triggers a failover
routine. This is not done automatically because there may be users who prefer to use an external

18

Executing Updates and Queries

failure detector or want to do things manually. To deactivate the failure detector, execute the following
command:

shel | > nysql fabric group deactivate ny_group

Executing Updates and Queries

Executing queries with a Fabric-aware connector is easy. The following example shows a section of
code designed to add employees and search for them. Notice that we simply import the fabric package
from the Connector/Python library and provide the Fabric connection parameters such as the location
of the Fabric node (as specified in the [pr ot ocol . xm r pc] configuration file section) and user
credentials.

i mport mnysql . connect or
from nmysqgl . connector inport fabric

def add_enpl oyee(conn, enp_no, first_name, |ast_nane):
conn. set _property(group="my_group”, node=fabric. MODE_READWRI TE)
cur = conn. cursor ()
cur . execut e(" USE enpl oyees")
cur . execut e(
"I NSERT | NTO enpl oyees VALUES (%, %, %)",
(enmp_no, first_nane, |ast_nane)

We need to keep track of what we have executed in order to,
at |east, read our own updates from a sl ave.
cur . execut e(" SELECT @@l obal . gti d_executed")
for rowin cur:
print "Transacti ons executed on the nmaster”, row O]
return rowf 0]

def find_enpl oyee(conn, enp_no, gtid_executed):

conn. set _property(group="my_group”, node=fabric. MODE_READONLY)

cur = conn. cursor ()

Quarantee that a slave has applied our own updates before

readi ng anyt hi ng.

cur . execut e(
" SELECT WAI T_UNTI L_SQ._THREAD AFTER GTIDS(' %', 0)" %
(gtid_executed,)

for rowin cur:
print "Had to synchroni ze", row, "transactions."
cur . execut e(" USE enpl oyees")
cur . execut e(
"SELECT first_nane, |ast_name FROM enpl oyees "
"WHERE enp_no = %", (enp_no,)
)
for rowin cur:
print "Retrieved", row

Address of the Fabric, not the host we are going to connect to.
conn = nysgl . connect or. connect (
fabric={"host" : "local host", "port" : 32274,
"usernanme": "admin", "password" : "adm npass"

b

user ="webuser", password="webpass", autocomit=True

)

conn. set _property(group="my_group”, node=fabric. MODE_READWRI TE)
cur = conn. cursor ()
cur . execut e(" CREATE DATABASE | F NOT EXI STS enpl oyees")
cur . execut e(" USE enpl oyees")
cur . execut e(" DROP TABLE | F EXI STS enpl oyees")
cur . execut e(
" CREATE TABLE enpl oyees ("
" enp_no | NT, "
first_name CHAR(40),
| ast _name CHAR(40)"

19

Group Maintenance

"o
)

gtid_executed = add_enpl oyee(conn, 12, "John", "Doe")
find_enpl oyee(conn, 12, gtid_executed)

You can copy this code into a Python module named t est _f abri c_query. py and execute it with
the following command:

shel | > python ./test_fabric_query. py
(u' John', u' Doe')

Group Maintenance

To find out which servers are in a group, use this command:

shel | > nysql fabric group | ookup_servers ny_group

Conmmand :
{ success = True
return =
{'status': 'PRIMARY', 'server_uuid': 'bbe6f7cl-b6c3-11le3-aaa2-58946b051f 64",
"nmode' : ' READ WRITE', 'weight': 1.0, 'address': 'l ocal host: 3307
I
{'status': ' SECONDARY', 'server_uuid' : '0c9e67d0-8194-11e2-8a7c-f0def124dcc5’,
"nmode' : ' READ ONLY', 'weight': 1.0, 'address': 'l ocal host: 3308'
I
{'status': ' SECONDARY', 'server_uuid' : '0c67e5bl-8194-11e2-8a7c-f0def124dcc5’,
"nmode' : ' READ ONLY', 'weight': 1.0, 'address': 'l ocal host: 3309'
b

|
activities =

}

In this example, there are three servers identified by their UUID values. The server running at
| ocal host: 3307 is a primary, whereas the other servers are secondaries.

It is sometimes necessary to take secondaries offline for maintenance. However, before stopping a
server, it is important to remove it from the group to avoid having the Fabric failure detector trigger any
action. This can be done through the following commands. ser ver _uui d should be replaced with a
server UUID value (a value of the form d2369bc9- 2009- 11e3- 93c6- f Odef 14a00f 4).

shel | > nysql fabric group renove my_group server_uuid

A primary cannot be removed from a group. To disable any primary in a group, execute this command:

shel | > nysql fabric group denote my_group

If a group contains no servers, it is empty and can be destroyed (removed) with this command:

shel | > nysql fabric group destroy ny_group

It is also possible to force removal of a nonempty group by specifying the parameter - - f or ce. This
command removes all servers from nmy_gr oup and removes the group.

shel | > nysql fabric group destroy my_group --force

3.2 Example: Fabric and Sharding

This example explores sharding. The essence of a sharding solution that uses MySQL involves
partitioning the data into independent sets (independent MySQL Servers) and directing each client to
the partition (MySQL Server) that has the data the client wants to modify.

20

Introduction to Sharding

This architecture scales the write operations for a given dataset since resource demands are
distributed across the partitions (MySQL Servers) of the data set. Each patrtition is referred to as a
shard.

3.2.1 Introduction to Sharding

The Fabric sharding implementation requires you to provide the sharding key explicitly while executing
a query. To define sharding over a set of tables using the sharding mechanism built into Fabric, it is
important to understand two concepts and how they relate.

Shard Mapping

A shard mapping serves to bring a database object (a database table) into the Fabric sharding system.
The mapping is a way of informing Fabric that we want a particular sharding scheme (range, hash,

list, and so forth.) to be used on a database table, using a value in a particular column. Create a shard
mapping as follows:

1. Define a shard mapping, to tell Fabric the kind of sharding mechanism to use.

2. Add a relation between the mapping and a database object, to register the database table and a
column in the table with the shard mapping.

Once these operations have been completed, we can describe how the shard mapping should split the
tables. This is done while creating the shards.

Shards

These are the partitions on the table. Since sharding is done on a database table, using an attribute
(column) in the table, the values in the column influence how the shards are created. To explain this
further, assume that we have two tables we wish to shard.

» employees
e Salary

Assume further that both tables are to be sharded by the employee ID that is part of their columns.
Where a row is placed is based on the value in the employee ID column. Hence, in a range-based
sharding scheme, a shard is nothing but a range of employee ID values.

3.2.2 Sharding Scenario

In the sections that follow, we take the example of a employee table that must be sharded across three
MySQL groups. The following procedure lists the sequence of commands to run to perform each step.

Unsharded Data

Assume that we have an unsharded table named enpl oyees that contains Employee IDs, on which
we want to create the following shards. Each of these ranges is placed in one shard:

e 1-99999: shard-1
* 100000- 199999: shard-2
e 200000- : shard-3

In addition to creating the ranges themselves (in a range based sharding scheme) we also must define
where this range of values should reside.

Starting Multiple MySQL Servers

MySQL Servers must be started on the directories that were copied. Assume that MySQL servers are
started on the following hosts and ports:

21

Sharding Scenario

* | ocal host: 3307
* | ocal host: 3308
* | ocal host: 3309
* | ocal host: 3310
* | ocal host: 3311
* | ocal host: 3312
* | ocal host: 3313

* | ocal host: 3314
Creating the Groups in Fabric
A logical group in Fabric maps to a shard. So as a first step to sharding we must implement the Fabric

groups that store the shards. This can be done as follows:

shel | > nysql fabric group create group_id-1
shel | > nysql fabric group create group_id-2
shel | > nysql fabric group create group_id-3

The preceding commands create three high-availability groups: gr oup_i d- 1, group_i d- 2, and
group_i d- 3. Each group stores a shard.

Then we must define a global group which is used to propagate schema updates to all tables in the
sharding setup and updates to global tables throughout the sharding scheme.

shel | > nysql fabric group create group_id-gl oba

Registering the Servers
The MySQL servers must be registered with the groups. Each group contains two servers.

3307, 3308 belong to group_id-1
shel | > nysql fabric group add group_id-1 | ocal host: 3307
shel | > nysql fabric group add group_id-1 | ocal host: 3308
3309, 3310 belong to group_id-2
shel | > nysql fabric group add group_id-2 | ocal host: 3309

shel | > nysql fabric group add group_id-2 | ocal host: 3310

3311, 3312 belong to group_id-3

shel | > nysql fabric group add group_id-3 |ocal host: 3311
shel | > nysql fabric group add group_id-3 | ocal host: 3312

3313, 3314 belong to group_id-global

shel | > nysql fabric group add group_i d-gl obal | ocal host: 3313
shel | > nysql fabric group add group_i d-gl obal | ocal host: 3314

Then promote one server to master in each group:

shel | > nysql fabric group pronote group_id-globa
shel | > nysql fabric group pronote group_id-1
shel | > nysql fabric group pronote group_id-2
shel | > nysql fabric group pronote group_id-3

22

Sharding Scenario

Define a Shard Mapping

When we define a shard mapping, we basically do three things:

1.
2.

Define the type of sharding scheme we want to use (RANGE or HASH).

shel | > nysql fabric shardi ng create_definition RANGE group_i d- gl oba

Pr ocedur e

{ uuid = 195bcale- c552- 464b- b4e3- 1f a15e9b49d5
fini shed = True
success = True,
return =1

activities

}

Add Tables to Defined Shard Mappings

Add the database table to the shard mapping defined previously.

shel | > nysql fabric shardi ng add_table 1 enpl oyees. enpl oyees enp_no

Add Shards for the Registered Tables

shel | > nysql fabric shardi ng add_shard 1 "group_id-1/1, group_id-2/100000

Executing Updates and Queries

Now you can write some example code for querying the sharded system.

i mport random
i mport mysql . connect or
from nmysqgl . connector inport fabric

def

def

def

pr epar e_synchroni zati on(cur)
We need to keep track of what we have executed so far to guarantee
that the enpl oyees. enpl oyees table exists at all shards
gtid_executed = None
cur . execut e(" SELECT @@l obal . gti d_execut ed")
for rowin cur
gtid_executed = row O]
return gtid_executed

synchroni ze(cur, gtid_executed)
Quarantee that a slave has created the enpl oyees. enpl oyees tabl e
before readi ng anyt hi ng.
cur . execut e(
" SELECT WAI T_UNTI L_SQ._THREAD AFTER GTIDS(' %', 0)" %
(gtid_executed,)

cur.fetchall ()

add_enpl oyee(conn, enp_no, first_nane, |ast_nanme, gtid_executed)
conn. set _property(tabl es=["enpl oyees. enpl oyees"], key=enp_no
nmode=f abri c. MODE_READWRI TE)
cur = conn. cursor ()
synchroni ze(cur, gtid_executed)
cur . execut e(" USE enpl oyees")
cur . execut e(
"I NSERT | NTO enpl oyees VALUES (%, %, %)",
(emp_no, first_nane, |ast_nane)

group_i d- 2/ 200000"

Define a global group that stores all the updates that must be propagated to all the shards that are
part of this sharding scheme.

We generate a unique shard mapping id to which we can later associate database objects (tables).

- - st at e=EN

23

Sharding Scenario

def find_enpl oyee(conn, enp_no, gtid_executed):
conn. set _property(tabl es=["enpl oyees. enpl oyees"], key=enp_no,
nmode=f abri c. MODE_READONLY)

cur = conn. cursor ()

synchroni ze(cur, gtid_executed)

cur . execut e(" USE enpl oyees")

for rowin cur:
print "Had to synchroni ze", row, "transactions."

cur . execut e(
"SELECT first_nane, |ast_name FROM enpl oyees
"WHERE enp_no = %", (enp_no,)

)

for rowin cur:
print row

def pick_shard_key():
shard = random randi nt (0, 2)
shard_range = shard * 100000
shard_range = shard_range if shard != 0 el se shard_range + 1
shift_w thi n_shard = random randi nt (0, 99999)
return shard_range + shift_w thin_shard

Address of the Fabric, not the host we are going to connect to.
conn = mysql . connect or. connect (
fabric={"host" : "local host", "port" : 32274,
"usernanme": "admin", "password" : "adm npass"

b

user ="webuser", password="webpass", autocomit=True

)

conn. set _property(tabl es=["enpl oyees. enpl oyees"], scope=fabric. SCOPE_G.OBAL,
nmode=f abri c. MODE_READWRI TE)

cur = conn. cursor ()

cur . execut e(" CREATE DATABASE | F NOT EXI STS enpl oyees")

cur . execut e(" USE enpl oyees")

cur . execut e(" DROP TABLE | F EXI STS enpl oyees")

cur . execut e(
" CREATE TABLE enpl oyees ("
" enp_no | NT,
" first_name CHAR(40), "
" | ast _nanme CHAR(40)"
ny

)

gtid_executed = prepare_synchroni zation(cur)
conn. set _property(scope=fabric. SCOPE_LOCAL)

first_names = ["John", "Buffalo", "Mchael", "Kate", "Deep", "Genesis"]
| ast _names = ["Doe", "Bill", "Jackson", "Bush", "Purple"]

list_enmp_no = []
for count in range(10):
enp_no = pi ck_shard_key()
|I'i st_enp_no. append(enp_no)
add_enpl oyee(conn, enp_no,
first_names[enp_no %l en(first_nanes)],
| ast _nanmes[enp_no % | en(| ast _nanes)],
gtid_execut ed

)

for emp_no in |ist_enp_no:
find_enpl oyee(conn, enp_no, gtid_executed)

Shard Move

If the current set of servers for a shard is not powerful enough, we can move the shard to a more
powerful server set.

The shard-move functionality can be used to move a shard from one group to another. These are the
steps necessary to move a shard.

24

Sharding Scenario

Shard Split

Set up the required group or groups.

shel | > mysql fabric group create group_i d- MOVE
shel | > nmysql fabric group add group_i d- MOVE | ocal host: 3315
shel | > nmysql fabric group add group_i d- MOVE | ocal host: 3316
shel | > nmysql fabric group pronote group_i d- MOVE

Execute the shard move.

shel | > nysql fabric shardi ng nove_shard 1 group_i d- MOVE

Verify that the move has happened.

shel | > nysql fabric shardi ng | ookup_servers enpl oyees. enpl oyees 4

If the shard becomes overloaded, we may need to split the shard into another group. The shard-split
feature can be used to split the data in a given shard into another shard. The following demonstrates
how to do this.

1.

Set up the required group or groups.

shel | > nysql fabric group create group_id-SPLIT
shel | > nysql fabric group add group_id-SPLIT | ocal host: 3317
shel | > nysql fabric group add group_id-SPLIT | ocal host: 3318
shel | > nysql fabric group pronote group_id-SPLIT

Execute the shard split.

shel | > nysql fabric sharding split_shard 2 group_id-SPLIT --split_val ue=150

Verify that the shard Split happened.

shel | > nmysql fabric shardi ng | ookup_servers enpl oyees. enpl oyees 152
shel | > nmysql fabric shardi ng | ookup_servers enpl oyees. enpl oyees 103

25

26

Chapter 4 The nysql f abri c Utility

Table of Contents

A1 GeING HEIP oo ettt 27
4.2 DUMP COMMEBNGS ..ottt ettt ettt e et e et et et e e e et e e e e eb e e e e st e e eeeaanes 27
O V=T | O 00 0] g F= T o £ 29
4.4 GroUP COMMENTAS ..ottt et ettt e et e et b e e et et e e e e bt e e e e tb e e e eaan s 29
4.5 Manage COMIMANGScouuuiiiiiii ettt e e et e e e et e e et e et et e e e e et e e e e et e e e eaan s 33
I e (o AV, (o [T g O 0] 3] /4 F= T o 34
A = Lo | L= @ 2 = o £ 35
IS VL= GO0 T 1 4 =1 g [0 £ 35
4.9 Sharding COMIMANGSuuiiiiiiiee e e et e et e e e et e e e e et e e e eaa s 39
4.10 SNaPSOt COMMANTSuuniiiiti ettt et e et e et et e e e e et eeeeaaes 43
4,11 StatiStICS COMMEANASveeiiiiie et e et e e e e e e e e e e e e e e e e e et saneaneaeanaenns 43
o a1 C=T= L A O 0] 0] 4= U Vo 44
T O LYY G o o 4 = o £ 44

This section describes the nysql f abr i c utility including examples of most commands. For a quick
reference guide for all of the commands, see Chapter 5, Fabric Utility Command Matrix.

Fabric commands are organized in categories that include dump, event, group, manage, provider, role,
server, sharding, snapshot, statistics threat, and user.

4.1 Getting Help

e nysql fabric hel p: Show syntax information and the help commands.
e nysql fabric hel p conmmands: List the available commands and their description.
* nysql fabric hel p groups: List the available groups.

 mysql fabric help [group] [comrmand]: Provide detailed information on a command.
shel | > nysql fabric help group create

group create group_id [--description=NONE] [--synchronous]

Create a group.

shel | > nysql fabric help

Usage: nysqlfabric [--param --config] <grp> <cnmd> [arg, ...].

MySQL Fabric 1.5.6 - MySQL server farm nanagenent franework

Opt i ons:
--version show prograni s version nunber and exit
-h, --help show this hel p nessage and exit

- - par amFCONFI G_PARAMS
Override a configuration paraneter.
--config=FI LE Read configuration from FI LE.

Basi ¢ commands:
hel p <grp> <cnd> Show hel p for conmand
hel p conmands List all commands
hel p groups List all groups

4.2 Dump Commands

The dump commands are designed to be used by the connectors to retrieve information on shards,
high-availability groups and their servers.

27

Dump Commands

Conmand: dunp shard_naps: Return information about all shard mappings matching any of the
provided patterns. If no patterns are provided, dump information about all shard mappings.

Usage:
nmysql fabric dunp shard_naps [--connector_versi on=CONNECTOR_VERSI ON]
[--patterns=]

Opt i ons:
--connect or _ver si on=CONNECTOR_VERSI| ON
The connectors version of the data. By default None.
--patterns=PATTERNS shard mappi ng pattern. By default

Conmand: dunp servers: Return information about the index for all mappings matching any
of the patterns provided. If no pattern is provided, dump the entire index. The lower_bound that is
returned is a string that is a md-5 hash of the group-id in which the data is stored.

Usage:
nmysql fabric dunp servers [--connector_versi on=CONNECTOR_VERSI ON|
[--patterns=]

Opt i ons:
--connect or _ver si on=CONNECTOR_VERSI| ON
The connectors version of the data. By default None.
--patterns=PATTERNS group pattern. By default

Conmand: dunp shard_i ndex: Return information about servers. The servers might belong to
any group that matches any of the provided patterns, or all servers if no patterns are provided.

Usage:
nmysql fabric dunp shard_i ndex [--connector_versi on=CONNECTOR_VERSI ON]
[--patterns=]

Opt i ons:
--connect or _ver si on=CONNECTOR_VERSI| ON
The connectors version of the data. By default None.
--patterns=PATTERNS group pattern. By default

Conmand: dunp shardi ng_i nf or mati on: Return information about all shard mappings
matching any of the provided patterns. If no patterns are provided, dump information about all shard
mappings.

Usage:
nmysql fabric dunp shard_naps [--connector_versi on=CONNECTOR_VERSI ON]
[--patterns=]

Opt i ons:
--connect or _ver si on=CONNECTOR_VERSI| ON
The connectors version of the data. By default None.
--patterns=PATTERNS shard mappi ng pattern. By default

Conmand: dunp shard_t abl es: Return information about all tables belonging to mappings
matching any of the provided patterns. If no patterns are provided, dump information about all tables.

Usage:
nmysql fabric dunp shard_tabl es [--connector_versi on=CONNECTOR_VERS| ON]
[--patterns=]

Descri ption:

Opt i ons:
--connect or _ver si on=CONNECTOR_VERSI| ON
The connectors version of the data. By default None.
--patterns=PATTERNS shard mappi ng pattern. By default

28

Event Commands

e Command: dunp fabric_nodes: Return a list of Fabric Nodes (i.e. addresses). Specifically, the
host and port are returned. If the protocol is not specified, it assumes the 'protocol.xmirpc'. Currently,
the 'protocol.xmlrpc’ and 'protocol.mysql' are valid options.

Usage:
nysql fabric dunp fabric_nodes [--protocol =PROTOCOL]

Opt i ons:
--protocol =PROTOCCOL MySQ. Fabric m ght support different protocols which
have different addresses. By default None.

Ret ur n:
List with existing Fabric Servers. ["host:port", ...]

4.3 Event Commands

The event commands are used to define events for tailoring the Fabric system to your needs for
controlling applications.

 Command: event trigger: Trigger an event.
Usage:
nmysql fabric event trigger <event> [--lo0cks=LOCKS] [--args=ARGCS]
[- - kwar gs=KWARGS]

Par anet er s:
<event> Event's identification. Accepted values: String

Opt i ons:
- -1 ocks=LOCKS By default None.
- - ar gs=ARGS Event's non-keyworded argunments. By default None.

- - kwar gs=KWARGS Event's keyworded argunments. By default None.

Ret ur n:
:cl ass: " CommandResul t° instance with UUI D of the procedures that were
triggered.

e Command: event wait_ for_procedures: Wait until procedures, which are identified through
their uuid in a list and separated by comma, finish their execution. If a procedure is not found an error
is returned.

Usage:
nysql fabric event wait_for_procedures [--proc_uui ds=PROC_UUl DS]

Opt i ons:
- - proc_uui ds=PROC_UUI DS
Iterable with procedures' UU Ds. By default None.

4.4 Group Commands

The group commands are used to define, modify, and control groups.

 Command: acti vat e: Activate failure detector for server(s) in a group. By default the failure
detector is disabled.

Usage:
nmysql fabric group activate <group_id> [--synchronous]

Par anet er s:
<group_id> Goup's id.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Wet her one should wait until the execution finishes or not. By

29

Group Commands

default True.

Ret ur n:
Tuple with job's uuid and status.

Conmand: add: Add a server into group. If users just want to update the state store and skip
provisioning steps such as configuring replication, the update_only parameter must be set to true.
Note that the current implementation has a simple provisioning step that makes the server point to
the master if there is any.

Usage:
nmysql fabric group add <group_id> <address> [--tineout =TI MEOUT]
[--update_only] [--synchronous]

Par anet er s:
<group_id> Goup's id.
<addr ess> Server's address.

Opti ons:

--timeout=TIMEQUT Tine in seconds after which an error is reported if one
cannot access the server. By default None.

- - updat e_onl y=UPDATE_ONLY
By default Fal se.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or
not. By default True.

Ret ur n:
Tuple with job's uuid and status.

Command: creat e: Create a group.

Usage:
nmysql fabric group create <group_id> [--descripti on=DESCRI PTI O\]
[--synchronous]

Par anmet er s:
<group_id> Goup's id.

Opt i ons:
--descri pti on=DESCRI PTI ON
Group' s description. By default None.
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

Ret ur n:
Tuple with job's uuid and status.

Conmand: deacti vat e: Deactivate failure detector for server(s) in a group. By default the failure
detector is disabled.

Usage:
nmysql fabric group deactivate <group_id> [--synchronous]

Par anmet er s:
<group_id> Goup's id.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

Ret ur n:
Tuple with job's uuid and status.

30

Group Commands

e Command: denot e: Demote the current master if there is one. If users just want to update the state
store and skip provisioning steps such as configuring replication, the update_only parameter must
be set to true. Otherwise any write access to the master is blocked, slaves are synchronized with the
master, stopped and their replication configuration reset. Note that no slave is promoted as master.

Usage:
nmysql fabric group denpbte <group_id> [--update_only] [--synchronous]

Par anet er s:
<group_i d>

Opt i ons:
- - updat e_onl y=UPDATE_ONLY
Only update the state store and skip provisioning. By default
Fal se.
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

e Command: descri ption: Update a group's description.

Usage:
nmysql fabric group description <group_id> [--descripti on=DESCRI PTI O\]
[--synchronous]

Par anet er s:
<group_id> Goup's id.

Opt i ons:
--descri pti on=DESCRI PTI ON
Group' s description. By default None.
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

Ret ur n:
Tuple with job's uuid and status.

e« Command: destroy: Remove a group.

Usage:
nmysql fabric group destroy <group_id> [--synchronous]

Par anmet er s:
<group_id> Goup's id.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

Ret ur n:
Tuple with job's uuid and status.

e Command: heal t h: Check if any server within a group has failed and report health information.

Usage:
nmysql fabric group health <group_id> [--timeout =TI MEQUT]

Par anet er s:
<group_i d> Timeout value after which a server is considered unreachable. If
None is provided, it assunes the default value in the
configuration file.

Opt i ons:
--timeout =TI MEQUT By default None.

31

Group Commands

e Command: | ookup_groups: Return information on existing group(s).

Usage:
nmysql fabric group | ookup_groups [--group_i d=GROUP_I D]

Opt i ons:
--group_i d=GROUP_ID None if one wants to list the existing groups or
group's id if one wants informati on on a group. By
def aul t None.

Ret ur n:
List with {"group_id" : group_id, "failure_detector": OV OFF, "description"
description}.

» Command: | ookup_ser ver s: Return information on existing server(s) in a group.

Usage:
nysql fabric group |ookup_servers <group_id> [--server_i d=SERVER | D]
[--status=STATUS] [-- nmbde=MODE]

Par anet er s:
<group_id> Goup's id.

Opti ons:

--server_i d=SERVER | D
None if one wants to |ist the existing servers in a group
or server's id if one wants information on a server in a
group. Accepted val ues: Servers's UU D or HOST: PORT. By
def aul t None.

--status=STATUS Server's status one is searching for. By default None.

- - node=MODE Server's node one is searching for. By default None.

Ret ur n:
Information on servers. List with [uuid, address, status, npde, weight]

« Command: pronot e: Promote a server into master.

If users just want to update the state store and skip provisioning steps such as configuring
replication, the update_only parameter must be set to true. Otherwise, the following happens.

If the master within a group fails, a new master is either automatically or manually selected among
the slaves in the group. The process of selecting and setting up a new master after detecting that the
current master failed is known as failover.

It is also possible to switch to a new master when the current one is still alive and kicking. The
process is known as switchover and may be used, for example, when one wants to take the current
master off-line for maintenance.

If a slave is not provided, the best candidate to become the new master is found. Any candidate must
have the binary log enabled, should have logged the updates executed through the SQL Thread and
both candidate and master must belong to the same group. The smaller the lag between slave and
the master the better. So the candidate which satisfies the requirements and has the smaller lag is
chosen to become the new master.

In the failover operation, after choosing a candidate, one makes the slaves point to the new master
and updates the state store setting the new master.

In the switchover operation, after choosing a candidate, any write access to the current master is
disabled and the slaves are synchronized with it. Failures during the synchronization that do not
involve the candidate slave are ignored. Then slaves are stopped and configured to point to the new
master and the state store is updated setting the new master.

Usage:
nysql fabric group pronmote <group_id> [--slave_i d=SLAVE | D] [--update_only]

32

Manage Commands

[--synchronous]

Par anet er s:
<group_i d>

Opti ons:

--slave_i d=SLAVE | D Candidate's UUI D or HOST: PORT. By default None.

- - updat e_onl y=UPDATE_ONLY
Only update the state store and skip provisioning. By
defaul t Fal se.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or
not. By default True.

« Command: renopve: Remove a server from a group.

Usage:
nmysql fabric group renobve <group_i d> <server_id> [--synchronous]

Par anet er s:
<group_i d> Group's id.
<server_id> Servers's UU D or HOST: PORT.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

Ret ur n:
Tuple with job's uuid and status.

4.5 Manage Commands

* Command: | oggi ng_| evel : Set logging level.

Usage:
nysql fabri ¢ manage | oggi ng_| evel <nmobdul e> <l evel >

Par anet er s:
<nmodul e> Modul e that will have its |ogging | evel changed.
<level > The logging level that will be set.

* Command: pi ng: Check whether the Fabric server is running or not.

Usage:
nysql fabri ¢ manage pi ng

» Command: set up: Setup Fabric Storage System. Create a database and necessary objects.

Usage:
nysql fabri c manage setup [--read_pw from stdin]

Opti ons:
--read_pw_from stdi n=READ_PW FROM STDI N
Whet her to read passwords fromstdin instead of fromthe
controlling tty. By default False.

e Conmand: st art: Start the Fabric server.

Usage:
nmysql fabric manage start [--foreground] [--disable_clustering] [--bootstrap]
[--cluster_seed=CLUSTER_SEED] [--cl uster_uui d=CLUSTER_UUI D
[--cluster_timeout=5] [--read_pw fromstdin]

Opt i ons:
- - f or egr ound=FOREGROUND

33

Provider Commands

Whet her it should be started as background process or not. Default
is False. By default Fal se.

- -di sabl e_cl ust eri ng=Dl SABLE_CLUSTERI NG
Whether it should start with its clustering capabilities disabled
and never join a cluster. By default False.

- - boot st r ap=BOOTSTRAP
Whet her the node will be used to bootstrap the cluster or not.
Default is False. By default Fal se.

--cl ust er_seed=CLUSTER_SEED
Information that will be used to discover nenbers of the cluster
and eventually try to join it. By default None.

--cluster_uui d=CLUSTER _UUl D
Cluster ldentifier. Used to ensure that the node does not connect
to the wong cluster. By default None.

--cluster_timeout =CLUSTER_TI MEQUT
Ti meout after which the node will stop trying to join the cluster.
By default 5.

--read_pw_from st di n=READ_PW FROM STDI N
Whet her to read passwords fromstdin instead of fromthe
controlling tty. By default Fal se.

e Command: st op: Stop the Fabric server.

Usage:
nmysql fabri c nanage stop

* Command: teardown: Tear down Fabric Storage System. Drop database and its objects.

Note
E A teardown removes the backing store contents, therefore all configuration
information is lost. It's the contrary of nenage set up.

Usage:
nmysql fabri c manage teardown [--read_pw from stdin]

Opt i ons:
--read_pw_from st di n=READ_PW FROM STDI N
Whet her to read passwords fromstdin instead of fromthe
controlling tty. By default Fal se.

4.6 Provider Commands

The provider commands are used to manage cloud providers.

e Command: |i st: Returninformation on existing provider(s).

Usage:
nysql fabric provider |ist [--provider_id=PROVI DER | D

Opt i ons:
--provider_i d=PROVI DER_| D
None if one wants to |ist the existing providers or provider's id
if one wants information on a provider. By default None.

» Command: regi ster: Register a provider.

Usage:
nysql fabric provider register <provider_id> <url> [--tenant=TENANT]
[--provider _type=OPENSTACK] [--default_i mnage=DEFAULT | MAGE]
[--defaul t_flavor=DEFAULT_FLAVOR] [- -extra=EXTRA]
[--synchronous]

Par anet er s:
<provider_id> Provider's I|d.
<url > URL that is used as an access point.

34

Role Commands

Opti ons:

--tenant =TENANT Tenant's nanme, i.e. who will access resources in the cloud.
By default None.

- - provi der _t ype=PROVI DER_TYPE
Provi der type. By default OPENSTACK.

--defaul t _i mage=DEFAULT_| MAGE
By default None.

--defaul t _fl avor =DEFAULT_FLAVOR
By default None.

- - ext ra=EXTRA Define paraneters that are specific to a provider. By
def aul t None.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or
not. By default True.

Ret ur n:
Tuple with job's uuid and status.

e Command: unregi st er: Unregister a provider.

Usage:
nysql fabric provider unregister <provider_id> [--synchronous]

Par anet ers:
<provider_id> Provider's I|d.

Opt i ons:
- - synchr onous=SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

Ret ur n:
Tuple with job's uuid and status.

4.7 Role Commands

The role commands are used to display information about an user's role as description and
permissions.

 Command: |i st: Listroles and associated permissions.

Usage:
nmysql fabric role list [--name=NAVE]

Opt i ons:
--name=NAME Rol e's nane. By default None.

4.8 Server Commands

The server commands are used to get information about servers and set their properties, namely
status, mode and weight.

« Command: cl one: Clone the objects of a given server into a destination server.

Usage:
nmysql fabric server clone <group_id> <destn_address> [--source_i d=SOURCE_| D]
[--tinmeout =TI MEQUT] [--synchronous]

Par anet er s:
<group_i d> The I D of the source group.
<dest n_address> The address of the destination M/SQL Server.

Opt i ons:
--source_i d=SOURCE_I| D
The address or UUI D of the source MySQL Server. By

35

Server Commands

def aul t None.

--timeout=TIMEQUT Tinme in seconds after which an error is reported if the
destination server is unreachable. By default None.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or
not. By default True.

« Command: cr eat e: Create a virtual machine instance.

Usage examples:

shel | > nmysql fabric server create provider --inmage nanme=i mage- nysql \
--flavor name=vmtenpl ate --neta db=nysqgl --neta=version=5.6
shel | > mysql fabric server create provider --inmage nanme=i mage- nysql \

--flavor name=vmtenpl ate --security _groups grp_fabric, grp_ham

Options that accept a list are defined by providing the same option multiple times in the command-
line. The image, flavor, files, meta and scheduler_hints are those which might be defined multiple
times. Note the the security _groups option might be defined only once but it accept a string with a list
of security groups.

Usage:

nmysql fabric server create <provider_id> [--image=I MAGE] [--flavor=FLAVOR]
- -nunber _nmachi nes=1] [--availability_zone=AVAI LABI LI TY_ZONE]
--key_nanme=KEY_NAME] [--security_groups=SECURI TY_GROUPS]
-privat e_net wor k=PRI VATE_NETWORK]
- publ i c_net wor k=PUBLI C_NETWORK] [- - user dat a=USERDATA]
-swap=SWAP] [--schedul er _hi nt s=SCHEDULER HI NTS] [- - met a=META]
- dat ast or e=DATASTORE] [--dat ast ore_ver si on=DATASTORE_VERS| O\]
-si ze=Sl| ZE] [--dat abases=DATABASES] | - - user s=USERS]
- confi gurati on=CONFI GURATI ON] [--security=SECURI TY]
--skip_store] [--wait_spawning] [--synchronous]

[
[
[
[
[
[
[
[
[

Par anmet er s:
<provider_id> Provider's I|d.

Opt i ons:
- -i mage=l MVAGE | mage' s properties. (e.g. name=i mage-mysql). Accepted
val ues: |ist of key/value pairs. By default None.
--fl avor =FLAVOR Flavor's properties (e.g. name=vmtenpl ate). Accepted
val ues: |ist of key/value pairs. By default None.

- - nunber _nmachi nes=NUVBER_MACHI NES
Nurber of machines to be created. Accepted val ues:
integer. By default 1.

--availability_zone=AVAI LABI LI TY_ZONE
Narme of availability zone. Accepted val ues: string. By
def aul t None.

--key_nanme=KEY_NAME Nane of the key previously created. Accepted val ues:
string. By default None.

--security_groups=SECURI TY_GROUPS
Security groups to have access to the machine(s).
Accepted values: string with a list of security groups.
By default None.

--privat e_net wor k=PRI VATE_NETWORK
Narme of the private network where the nachi ne(s) will
be placed to. By default None.

- - publ i c_net wor k=PUBLI C_NETWORK
Narme of the public network which will provide a public
address. By default None.

--userdat a=USERDATA Script that to be used to configure the nachi ne(s).
Accepted values: path to a file. By default None.

- - swap=SWAP Si ze of the swap space in megabyte. Accepted val ues:
integer. By default None.

- -schedul er _hi nt s=SCHEDULER_HI NTS

I nformati on on which host(s) the nachine(s) will be
created in. Accepted values: list of key/value pairs.
By default None.

- - met a=META Met adat a on the machi ne(s). Accepted val ues: |ist of

36

Server Commands

key/val ue pairs. By default None.

- - dat ast or e=DATASTORE
Dat abase Technol ogy (.e.g. MySLQ . Accepted val ues:
string. By default None.

- - dat ast or e_ver si on=DATASTORE_VERSI| ON
Dat astore version (.e.g. 5.6). Accepted val ues: string.
By default None.

--size=S| ZE Storage area reserved to the data store. Accepted
val ues: string in G gabytes. By default None.

- - dat abases=DATABASES

Dat abase objects that will be created. Accepted val ues:
Li st of strings separated by conma. By default None.
- - user s=USERS By default None.

--confi gurati on=CONFI GURATI ON
Configuration attached to the database. Accepted
val ues: string. By default None.

--security=SECURITY By default 0.0.0.0/0 is set. Users who want a differnt
perm ssion shoul d specify a different value. Accepted
val ues: string. By default None.

- - ski p_st ore=SKI P_STORE
Do not store informati on on machine(s) into the state
store. Default is False. By default False.

--wai t _spawni ng=WAlI T_SPAVNI NG
Whet her one should wait until the provider finishes its
task or not. By default True.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or
not. By default True.

Conmand: dest r oy: Destroy a virtual machine instance.

Usage:
nmysql fabric server destroy <provider_id> <nachi ne_uui d> [--force]
[--skip_store] [--synchronous]

Par anet er s:
<provi der _i d> Provider's Id.
<machi ne_uui d> Machi ne' s uui d.

Opt i ons:

--force=FORCE |Ignore errors while accessing the cloud provider. By default
Fal se.

- -ski p_st ore=SKI P_STORE
Proceed anyway if there is no information on the machine in
the state store. Default is False. By default Fal se.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not.
By default True.

Ret ur n:
Tuple with job's uuid and status.

Conmand: | i st : Return information on existing machine(s) created by a provider.

Usage:
nmysql fabric server list <provider_id> [--generic_filters=GENERI C_Fl LTERS]
[--meta_filters=META FILTERS] [--skip_store]

Par anet er s:
<provider_id> Provider's I|d.

Opti ons:

--generic_filters=GENERI C_FI LTERS
Set of key-value pairs that are used to filter the |ist of
returned machi nes. By default None.

--neta_filters=META FI LTERS
Set of key-value pairs that are used to filter the |ist of
returned machi nes. By default None.

- -ski p_st ore=SKI P_STORE
Don't check the list of nachines fromthe state store. By default

37

Server Commands

Fal se.

e Command: | ookup_uui d: Return server's uuid.

Usage:
nmysql fabric server |ookup_uuid <address> [--timeout =TI MEQUT]

Par anet er s:
<address> Server's address.

Opti ons:
--timeout=TIMEQUT Tine in seconds after which an error is reported if the
UUIDis not retrieved. By default None.

Ret ur n:
UUI D.

e server set nopde: Set a server's mode, which determines whether it can process read_only,
read_write, or both transaction types. It can also be set to offline meaning that the server does not
process any kind of user's request.

Usage:
nmysql fabric server set_npde <server_id> <npde> [--synchronous]

Par anmet er s:
<server_id> Servers's UU D or HOST: PORT.
<node>

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

« Conmand: server set_status: Seta server's status.

Any server added into a group has to be alive and kicking and its status is automatically set to
SECONDARY. If the failure detector is activate and the server is not reachable, it is automatically set
to FAULTY.

Users can also manually change the server's status. Usually, a user may change a slave's mode
to SPARE to avoid write and read access and guarantee that it is not chosen when a failover or
switchover routine is executed.

By default replication is automatically configured when a server has its status changed. In order
to skip this, users must set the update_only parameter to true. If done so, only the state store is
updated with information on the new status.

Usage:
nmysql fabric server set_status <server_id> <status> [--update_only]
[--synchronous]
Par anet er s:
<server_id> Servers's UU D or HOST: PORT.
<stat us> Server's status.

Opti ons:
- - updat e_onl y=UPDATE_ONLY
By default Fal se.
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

« Command: server set_ wei ght: Seta server's weight.

38

Sharding Commands

server set _wei ght: Set a server's weight, which helps determine its likelihood of being chosen to
process requests or replace a failed master. The value must be greater than 0. 0 and lower or equal
to 1. 0.

Note
E This option was implemented in Fabric 1.5.7.

Usage:
nmysql fabric server set_wei ght <server_id> <wei ght> [--synchronous]

Par anet er s:
<server_id> Servers's UU D or HOST: PORT.
<wei ght > Server's wei ght.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

4.9 Sharding Commands

The sharding commands are used to define, modify, and control sharding.

e Command: add_shar d: Add a shard.

Usage:
nysql fabric shardi ng add_shard <shard_mappi ng_i d> <groupid_|l b_Iist>
[--state=Dl SABLED] [--update_only] [--synchronous]
Par anet er s:
<shard_mappi ng_i d> The uni que identification for a shard mappi ng.
<groupid_Ib_list> The list of group_id, |ower_bounds pairs in the format,
group_i d/ | ower _bound, group_id/ | ower_bound. ..

Opt i ons:

--stat e=STATE | ndicates whether a given shard is ENABLED or DI SABLED. By
def aul t DI SABLED.

- -updat e_onl y=UPDATE_ONLY
Only update the state store and skip addi ng range checks. By
defaul t Fal se.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not.
By default True.

Ret ur n:
A dictionary representing the current Range specification.

e Command: add_t abl e: Add a table to a shard mapping.

Usage:
nmysql fabric sharding add_tabl e <shard_mappi ng_i d> <t abl e_nanme>
<col um_nane> [--range_check] [--update_only] [--synchronous]

Par anet er s:
<shar d_mappi ng_i d> The shard mapping id to which the input table is

attached.
<t abl e_nane> The tabl e bei ng sharded.
<col um_nane> The col umm whose val ue is used in the shardi ng schenme

bei ng applied

Opt i ons:
- -range_check=RANGE_CHECK
Indicates if range check should be turned on for this table. By
defaul t Fal se.
- - updat e_onl y=UPDATE_ONLY

39

Sharding Commands

Only update the state store and skip addi ng range checks. By
defaul t Fal se.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

Conmand: create_definition: Define a shard mapping.

Usage:
nysql fabric sharding create_definition <type_name> <group_id>
[--synchronous]

Par anet er s:
<type_nane> The type of shardi ng scheme - RANGE or HASH
<group_id> Every shard mapping is associated with a global group that
stores the global updates and the schema changes for this shard
mappi ng and di ssi pates these to the shards.

Opt i ons:
- - synchr onous=SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

Conmand: di sabl e_shar d: Disable a shard.

Usage:
nysql fabric shardi ng di sabl e_shard <shard_i d> [--synchronous]

Par anet er s:
<shard_i d> The shard ID of the shard that needs to be renpved.

Opti ons:
- - synchr onous=SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

Conmand: enabl e_shar d: Enable a shard.

Usage:
nmysql fabric shardi ng enabl e_shard <shard_i d> [--synchronous]

Par anet er s:
<shard_i d> The shard ID of the shard that needs to be renpved.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

Conmand: |ist_definitions:Lists all the shard mapping definitions.

Usage:
nysql fabric sharding |ist_definitions

Ret ur n:
A list of shard mapping definitions An Enpty List if no shard napping
definition is found.

Conmand: |i st _tabl es: Returns all the shard mappings of a particular sharding_type
Usage:

nmysql fabric sharding |ist_tables <shardi ng_type>
Par anet er s:

<shardi ng_type> The sharding type for which the sharding specification
needs to be returned.

40

Sharding Commands

Ret ur n:
A list of dictionaries of shard mappings that are of the sharding type An
enpty list of the sharding type is valid but no shard mapping definition is
found An error if the sharding type is invalid.

Conmand: | ookup_server s: Lookup a shard based on the give sharding key.
Usage:
nmysql fabric sharding | ookup_servers <tabl e_nanme> <key> [--hi nt=LOCAL]

Par anet er s:
<t abl e_nane> The tabl e whose sharding specification needs to be | ooked up.

<key> The key val ue that needs to be | ooked up
Opt i ons:
--hint=H NT A hint indicates if the query is LOCAL or GLOBAL. By default
LOCAL.
Ret ur n:

The Group UUID that contains the range in which the key bel ongs.

Conmand: | ookup_t abl e: Fetch the shard specification mapping for the given table.

Usage:
nmysql fabric sharding | ookup_t abl e <tabl e_nane>

Par anet er s:
<t abl e_nane> The nanme of the table for which the sharding specification is
bei ng queri ed.

Ret ur n:
The a dictionary that contains the shard mapping informati on for the given
tabl e.

Conmand: nove_shar d: Move the shard represented by the shard_id to the destination group.

By default this operation takes a backup, restores it on the destination group and guarantees that
source and destination groups are synchronized before pointing the shard to the new group. If users
just want to update the state store and skip these provisioning steps, the update_only parameter
must be set to true.

Usage:
nmysql fabric sharding nmove_shard <shard_i d> <group_i d> [--update_only]
[--synchronous]

Par anet er s:
<shard_id> The ID of the shard that needs to be noved.
<group_id> The ID of the group to which the shard needs to be noved.

Opti ons:
- - updat e_onl y=UPDATE_ONLY
By default Fal se.
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

Conmand: prune_shar d: Given the table name prune the tables according to the defined sharding
specification for the table.

Usage:
nmysql fabric sharding prune_shard <tabl e_nane> [--synchronous]

Par anet er s:
<tabl e_nane> The table that needs to be sharded.

Opt i ons:

41

Sharding Commands

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

e Command: renpve_definition: Remove the shard mapping definition represented by the Shard
Mapping ID.

Usage:
nmysql fabric sharding renove_definition <shard_mappi ng_i d> [--synchronous]

Par anmet er s:
<shar d_mappi ng_i d> The shard mapping | D of the shard nappi ng definition
that needs to be renpved.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

e Command: renopve_ shar d: Remove a shard.

Usage:
nmysql fabric sharding renove_shard <shard_i d> [--synchronous]

Par anet er s:
<shard_i d> The shard ID of the shard that needs to be renpved.

Opt i ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

« Command: renopve_ tabl e: Remove the shard mapping represented by the Shard Mapping object.

Usage:
nmysql fabric sharding renpve_t abl e <tabl e_nane> [--synchronous]

Par anet er s:
<t abl e_nane> The nanme of the table whose shardi ng specification is being
renoved.

Opti ons:
- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

e Command: split_shard: Split the shard represented by the shard_id into the destination group.

By default this operation takes a backup, restores it on the destination group and guarantees that
source and destination groups are synchronized before pointing the shard to the new group. If users
just want to update the state store and skip these provisioning steps, the update_only parameter
must be set to true.

Usage:
nmysql fabric sharding split_shard <shard_i d> <group_i d>
[--split_value=SPLIT_VALUE] [--update_only] [--synchronous]

Par anet er s:
<shard_i d> The shard_id of the shard that needs to be split.
<group_id> The ID of the group into which the split data needs to be noved.

Opt i ons:
--split_val ue=SPLI T_VALUE
The val ue at which the range needs to be split. By default None.
- - updat e_onl y=UPDATE_ONLY
By default Fal se.

42

Snapshot Commands

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes. By default
True.

4.10 Snapshot Commands

The snapshot commands are related to the creation or destruction of machine snapshots.

* Command: cr eat e: Create a snapshot image from a machine.

Usage:
nmysql fabric snapshot create <provider_id> <machi ne_uui d> [--skip_store]
[--wait_spawni ng] [--synchronous]

Par anet er s:
<provi der _i d> Provider's Id.
<machi ne_uui d> Machi ne's uui d.

Opt i ons:

- -ski p_st ore=SKI P_STORE
Proceed anyway if there is no information on the nachine in the
state store. Default is False. By default False.

--wai t _spawni ng=WAlI T_SPAVWNI NG
By default True.

- - synchr onous =SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
defaul t True.

Ret ur n:
Tuple with job's uuid and status.

 Command: destroy: Destroy snapshot images associated to a machine.

Usage:
nysql fabric snapshot destroy <provider_id> <nmachi ne_uui d> [--skip_store]
[--synchronous]
Par anet er s:
<provider_id> Provider's I|d.
<machi ne_uui d> Machi ne' s uui d.

Opt i ons:
--ski p_st ore=SKI P_STORE
Proceed anyway if there is no information on the machine in the
state store. Default is False. By default False.
- - synchr onous=SYNCHRONOUS
Whet her one should wait until the execution finishes or not. By
default True.

Ret ur n:
Tuple with job's uuid and status.

4.11 Statistics Commands

The statistics commands are used to Retrieve statistics at note, group or procedure level.

» Command: group: Retrieve statistics on Groups.

Usage:
nmysql fabric statistics group [--group_i d=GROUP_I D]
Opt i ons:
--group_i d=GROUP_ID G oup one wants to retrieve information on. By default

None.

« Command: node: Retrieve statistics on the Fabric node.

43

Threat Commands

Usage:
nmysql fabric statistics node

« Command: procedur e: Retrieve statistics on Procedures.

Usage:
nmysql fabric statistics procedure [--procedure_name=PROCEDURE NAME]

Opt i ons:
- - procedur e_nanme=PROCEDURE_NAVME
Procedure one wants to retrieve infornati on on. By default None.

4.12 Threat Commands

The threat commands are used to report that a server is not working properly for any reason, these
commands can be used by external entities (e.g. connectors) and MySQL Fabric itself.

« Command: report_error: Reportaserver error. If there are many issues reported by different
servers within a period of time, the server is marked as faulty. Should the server be a primary, the
failover mechanism is triggered. Users who only want to set the server's status to faulty after getting
enough notifications from different clients must set the update_only parameter to true. By default its
value is false.

Usage:
nysql fabric threat report_error <server_id> [--reporter=UNKNOMN]
[--error=UNKNOWN] [--update_only] [--synchronous]

Par anet er s:
<server_id> Servers's UU D or HOST: PORT.

Opt i ons:

--reporter=REPORTER Who has reported the issue, usually an |IP address or a
host name. By default unknown.

- - error =ERROR Error that has been reported. By default unknown.

- -updat e_onl y=UPDATE_ONLY
Only update the state store and skip provisioning. By
defaul t Fal se.

- - synchr onous =SYNCHRONOUS
By default True.

« Command: report fail ure: Reportwith certainty that a server has failed or is unreachable.
Should the server be a primary, the failover mechanism is triggered. Users who only want to set the
server's status to faulty must set the update_only parameter to True. By default its value is false.

Usage:
nysql fabric threat report_failure <server_id> [--reporter=UNKNOMN]
[--error=UNKNOWN] [--update_only] [--synchronous]

Par anet er s:
<server_id> Servers's UU D or HOST: PORT.

Opt i ons:

--reporter=REPORTER Who has reported the issue, usually an |IP address or a
host name. By default unknown.

- -error =ERROR Error that has been reported. By default unknown.

- - updat e_onl y=UPDATE_ONLY
Only update the state store and skip provisioning. By
defaul t Fal se.

- - synchr onous =SYNCHRONOUS
By default True.

4.13 User Commands

The user commands are used to manage the Fabric user.

44

User Commands

Conmand: add: Add a new Fabric user.
Usage:
nysql fabric user add <username> [--protocol =PROTOCOL] [--rol es=ROLES]

Par anet er s:
<user name> The usernane account to add.

Opt i ons:
--protocol =PROTOCOL Protocol of the user (for exanple 'xmrpc'). By default
None.
--rol es=ROLES Comma separated list of roles, IDs or nanes (see ‘role

list’). By default None.

Conmand: del et e: Delete a Fabric user.
Usage:
nysql fabric wuser del ete <usernane> [--protocol =PROTOCOL] [--force]

Par anet er s:
<user nanme> The usernane account to del ete.

Opti ons:
--protocol =PROTOCOL Protocol of the user (for exanple 'xmrpc'). By default
None.
- - f or ce=FORCE Do not ask for confirmation. By default False.
Command: | i st: List users and their roles.
Usage:

nmysql fabric wuser list [--name=NAVE]

Opt i ons:
--name=NAME User's nane. By default None.

Conmand: passwor d: Change password for a Fabric user.
Usage:
nysql fabric user password <usernanme> [--protocol =PROTOCOL]

Par anet ers:
<usernanme> The usernanme to change the password of.

Opt i ons:

--protocol =PROTOCOL Protocol of the user (for exanple 'xmrpc'). By default
None.

Conmand: r ol es: Change roles for a Fabric user.
Usage:
nysql fabric wuser roles <usernane> [--protocol =PROTOCOL] [--rol es=ROLES]

Par anet er s:
<usernanme> The usernane to change the rol es of.

Opti ons:
--protocol =PROTOCOL Protocol of the user (for exanple 'xmrpc'). By default
None.
--rol es=ROLES Comma separated list of roles, IDs or nanes (see ‘role

list’). By default None.

45

46

Chapter 5 Fabric Utility Command Matrix

The following table lists all of the commands available in the nmysql f abri c utility. The table is sorted
by group and command to make it easier to find things. Each group and command is listed with all
available options and parameters. Below each is a short description of the task.

Table 5.1 Fabric Commands

Group Command Parameters Options

dump fabric_nodes --protocol=PROTOCOL

dump servers --
connector_version=CONNECTOF
--patterns=PATTERNS

dump shard_index -
connector_version=CONNECTOF
--patterns=PATTERNS

dump shard_maps --
connector_version=CONNECTOF
--patterns=PATTERNS

dump shard_tables --
connector_version=CONNECTOF
--patterns=PATTERNS

event trigger event --args=ARGS, --
kwargs=KWARGS, --
locks=LOCKS

group activate group_id --
synchronous=SYNCHRONOUS

group add address, group_id -
synchronous=SYNCHRONOUS,
--timeout=TIMEOUT, --
update_only=UPDATE_ONLY

group create group_id --
description=DESCRIPTION,
synchronous=SYNCHRQONOUS

group deactivate group_id --
synchronous=SYNCHRQONOUS

group demote group_id --
synchronous=SYNCHRONOUS,
update_only=UPDATE_ONLY

group description group_id --
description=DESCRIPTION,
synchronous=SYNCHRONOUS

group destroy group_id --
synchronous=SYNCHRQONOUS

group health group_id --timeout=TIMEOUT

group lookup_groups --group_id=GROUP_ID

group lookup_servers group_id --mode=MODE, --
server_id=SERVER_ID,
--status=STATUS

47

Group Command Parameters Options

group promote group_id --slave_id=SLAVE_ID, --
synchronous=SYNCHRONOUS,
update_only=UPDATE_QONLY

group remove group_id, server_id --
synchronous=SYNCHRQONOUS

manage logging_level level, module

manage ping

manage setup -
read_pw_from_stdin=READ_PW_FR

manage start -
bootstrap=BOOTSTRAP,
cluster_seed=CLUSTER | SEED,
cluster_timeout=CLUSTER_TIMEOU
cluster_uuid=CLUSTER_UUID,
disable_clustering=DISABLE_CLUST
foreground=FOREGROUND,
read_pw_from_stdin=READ_ PW_FR

manage stop

manage teardown --
read_pw_from_stdin=READ_PW_FR

provider list --
provider_id=PROVIDER_|ID

provider register provider_id, url --
default_flavor=DEFAULT| FLAVOR,
default_image=DEFAULT_IMAGE,
--extra=EXTRA, --
provider_type=PROVIDER_TYPE,
synchronous=SYNCHRONOUS,
--tenant=TENANT

provider unregister provider_id --
synchronous=SYNCHRONOUS

role list --name=NAME

server clone destn_address, --

group_id source_id=SOURCE_ID,

synchronous=SYNCHRONOUS,
--timeout=TIMEOUT

server create provider_id --
availability _zone=AVAILABILITY_ZOlI
configuration=CONFIGURATION,

48

Group

Command

Parameters

Options

databases=DATABASES

datastore=DATASTORE,
datastore_version=DATA
--flavor=FLAVOR,
--image=IMAGE, --
key_name=KEY_NAME,
--meta=META, --
number_machines=NUM

private_network=PRIVAT

public_network=PUBLIC |
scheduler_hints=SCHED
--security=SECURITY, --
security_groups=SECUR
--size=SIZE, --

skip_store=SKIP_STORE

--swap=SWAP, --
synchronous=SYNCHRO
--userdata=USERDATA,
--users=USERS, --
wait_spawning=WAIT_SH

STORE,

BER_M
E_NET\
INETWC
ULER_}
TY_GR

NOUS,

PAWNIN

server

destroy

machine_uuid,
provider_id

--force=FORCE, --

skip_store=SKIP_STORE

synchronous=SYNCHRO

NOUS

server

list

provider_id

generic_filters=GENERIC

meta_filters=META_FILT

skip_store=SKIP_STORE

FILTE!

ERS,

server

lookup_uuid

address

--timeout=TIMEOUT

server

set_mode

mode, server_id

synchronous=SYNCHRO

NOUS

server

set_status

server_id, status

synchronous=SYNCHRO

update_only=UPDATE_C

NOUS,

NLY

server

set_weight

server_id, weight

synchronous=SYNCHRO

NOUS

sharding

add_shard

groupid_lb_list,
shard_mapping_id

--state=STATE, --
synchronous=SYNCHRO

update_only=UPDATE_C

NOUS,

NLY

sharding

add_table

column_name,
column_name,
shard_mapping_id,
table_name

range_check=RANGE_C

synchronous=SYNCHRO

49

HECK,

NOUS,

Group Command Parameters Options
update_only=UPDATE_ONLY
sharding create_definition group_id, type_name --
synchronous=SYNCHRONOUS
sharding disable_shard shard_id --
synchronous=SYNCHRQONOUS
sharding enable_shard shard_id --
synchronous=SYNCHRQONOUS
sharding list_definitions
sharding list_tables sharding_type
sharding lookup_servers key, table_name --hint=HINT
sharding lookup_table table_name
sharding move_shard group_id, shard_id --
synchronous=SYNCHRONOUS,
update_only=UPDATE_ONLY
sharding prune_shard table_name --
synchronous=SYNCHRONOUS
sharding remove_definition shard_mapping_id --
synchronous=SYNCHRQONOUS
sharding remove_shard shard_id --
synchronous=SYNCHRQONOUS
sharding remove_table table_name --
synchronous=SYNCHRONOUS
sharding split_shard group_id, shard_id --
split_value=SPLIT_VALUE,
synchronous=SYNCHRONOUS,
update_only=UPDATE_ONLY
snapshot create machine_uuid, --
provider_id skip_store=SKIP_STORE,
synchronous=SYNCHRQONOUS,
wait_spawning=WAIT_SPAWNING
snapshot destroy machine_uuid, --
provider_id skip_store=SKIP_STORE,
synchronous=SYNCHRQONOUS
statistics group --group_id=GROUP_ID
statistics node
statistics procedure --
procedure_name=PROCEDURE_NA|
threat report_error server_id --error=ERROR, --
reporter=REPORTER, --
synchronous=SYNCHRONOUS,
update_only=UPDATE_ONLY

50

Group Command Parameters Options

threat report_failure server_id --error=ERROR, --
reporter=REPORTER, --
synchronous=SYNCHRO
update_only=UPDATE_C

user add username --protocol=PROTOCOL,
--roles=ROLES

user delete username --force=FORCE, --
protocol=PROTOCOL

user list --name=NAME

user password username --protocol=PROTOCOL

user roles username --protocol=PROTOCOL,

--roles=ROLES

51

NOUS,

NLY

52

Chapter 6 Backing Store

Table of Contents

6.1 Backing StOre TabIeScivuiiiiiii e 53
6.2 Protecting the BacCKiNg StOIEcccuiiiiiiii e e e e e r e e aanas 56

The backing store feature requires a MySQL instance. This server should be the same version as your
other servers and MySQL version 5.6.10 or later. This section explains how to set up the backing store
and provides information about some of the tables created.

To set up the backing store, use the nysql f abri ¢ command. The - - par amoptions specify the user
and password we created in Section 2.3.1, “Create the Associated MySQL Users” so that the utility can
connect to the backing store and create the database and tables. We show the resulting tables in the
new f abr i ¢ database below.

shel | > nysql fabri c manage setup --paramsstorage. user=fabric --paranrst orage. passwor d=secr et
[INFQ 1379444563. 457977 - MainThread - Initializing persister

user (fabric), server (local host:3306), database (fabric)

shel | > nysqgl show -ufabric -psecret fabric

dom e e e e emeaao +

| Tabl es |

dom e e e e emeaao +
checkpoi nts
error_| og
group_replication
groups

per mi ssi ons

rol e_perm ssi ons
rol es

servers

shar d_maps
shar d_r anges
shard_t abl es

shar ds
user _rol es
users
Fom e e e oo ooo-- +
Note
@ The tables described here are subject to change in future versions of Fabric.

6.1 Backing Store Tables

The checkpoi nt s table stores information on procedures' executions and is used to safely resume
executing a procedure after a crash and recovery:

Table 6.1 checkpoints

Column Type Comment

proc_uuid varchar(40) The procedure's unigue identification

lockable_objects blob Set of objects locked by the procedure

job_uuid varchar(60) The job's unique identification

sequence int(11) The job's sequence in the execution

action_fgn text Reference to the fully qualified name of
the function to be executed on behalf of
the job

53

Backing Store Tables

Column Type Comment

param_args blob Positional arguments to the job's
function

param_kwargs blob Keyword arguments to the job's function

started

double(16,6)

When the job started

finished

double(16,6)

When the job finished

The err or _I| og table contains information on servers' errors reported.

Table 6.2 error_log

Column Type Comment

server_uuid varchar(40) The server _uui d value from the
server that has raised an error

reported timestamp(6) When the error was reported

reporter varchar(64) Who reported the error: IP address,
host name

error text Error message or code reported

The group_r epl i cati on table defines replication among global groups and groups used in shards.
They are used primarily for shard splitting, moving, and global updates.

Table 6.3 group_replication

Column Type
master_group_id varchar(64)
slave_group_id varchar(64)

The gr oups table contains information about the groups being managed.

Table 6.4 groups

Column Type Comment

group_id varchar(64) The identifier for the group
description varchar(256) A description of the group
master_uuid varchar(40) The server _uui d value from the

master server

master_defined

timestamp(6)

When the current master was defined.

status

bit(1)

1 if the group is being monitored, O
otherwise

The per m ssi ons table contains information on rights to access the different sub-systems in Fabric.
Currently, a cor e sub-system is formally defined:

Table 6.5 permissions

Column Type Comment

permission_id int(10) unsigned Permission's ID

subsystem varchar(60) Sub-system identification

component varchar(60) Sub-system component

function varchar(60) Sub-system function. Currently, this is
not used

54

http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid
http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid

Backing Store Tables

Column

Type

Comment

description

varchar(1000)

Description

The r ol es table contains information on possible roles a user may have and by consequence his/her

permissions:

Table 6.6 roles

Column Type Comment
role_id int(10) unsigned Roles' ID

name varchar(80) Role's name
description varchar(1000) Role's description

The rol e_perm ssi ons table associates roles and permissions:

Table 6.7 role_permissions

Column

Type

Comment

role_id

int(10) unsigned

Roles' ID

permission_id

int(10) unsigned

Permission's ID

The ser ver s table contains a list of all servers managed by Fabric.

Table 6.8 servers

Column Type Comment

server_uuid varchar(40) UUID of the server

server_address varchar(128) Address of the server

mode int(11) Mode of the server (OFFLINE,
READ_ONLY, WRITE_ONLY,
READ_WRITE)

status int(11) Status of the server (FAULTY, SPARE,
SECONDARY, PRIMARY)

weight float Likelihood of receiving a request

group_id varchar(64) Group the server belongs to

The shar d_maps table contains the names and properties of the shard maps.

Table 6.9 shard_maps

Column

Type

Comment

shard_mapping_id

int(11)

Shard map identifier

type_name

enum('RANGE','HASH")

Shard map type

global_group

varchar(64)

Name of the global group (likely to go
away in the next revision)

The shar d_r anges table is the sharding index and is used to map a sharding key to a shard.

Table 6.10 shard_ranges

Column Type Comment
shard_mapping_id int(11) Shard map identifier
lower_bound varbinary(16) Lower bound for the range encoded as

a binary string

55

Protecting the Backing Store

Column Type Comment

shard_id int(11) Shard identifier (a number)

The shar d_t abl es table lists all tables that are sharded and what sharding map each belongs to. It
also names the column by which it is sharded.

Table 6.11 shard_tables

Column Type Comment

shard_mapping_id int(11) Shard map identifier

table_name varchar(64) Fully qualified table name
column_name varchar(64) Column name that is the sharding key

The shar ds table names the groups where each shard identifier is stored.

Table 6.12 shards

Column Type Comment

shard_id int(11) Shard identifier

group_id varchar(64) Group identifier (a dotted-name)

state enum('DISABLED','ENABLED)Status of the shard; DI SABLED means
that it is not available for use

The user s table identifies the users that might have permission to access the functions in the different
sub-systems:

Table 6.13 users

Column Type Comment

user_id int(10) unsigned User's internal ID

username varchar(100) User's name

protocol varchar(200) Protocol that the user is allowed to use
to access Fabric and its sub-systems

password varchar(128) Hashed user's password

6.2 Protecting the Backing Store

The backing store is very important to Fabric. You should take steps to ensure the database is backed
up and the server where it resides is stable and well maintained. For the purposes of backup, it is
sufficient to make periodic backups using either the mysql dunp client or mysql dbexport utility in
MySQL Utilities.

56

Chapter 7 Using MySQL Fabric with Pacemaker and Corosync

Table of Contents

4% I 1 o o 18 ox o] o H PSPPI 57
7.2 PrE-TEOUISITES . ..eiiit ittt ettt et et e e et e e et e e et e et et e e et e e et e e et e eanaae 57
7.3 Target ConfIQUIAtIONo.iiiiiiii e e e e e e e e e e e e et e et e eaeeanas 58
7.4 Setting up and teStiNG YOUI SYSTEIMcuuiiii ittt e e e e e an s 59
A R o T 8T (=T NN 1= 07 59
7.4.2 INStall @ll PACKAGES ...t 59
7.4.3 ConfIgure DRBDcoiiiii e e e 60
7.4.4 Configure MYSQL SEIVEL ...t e e e e e e e e eas 62
7.4.5 Configure MySQL FabriC ...cc.iiniiiii e e 63
7.4.6 Configure Corosync and Pacemakercccviiuiiiiiiiiiiii et 64
7.5 Key adminisStrative taskscouiiiiiiii e 67

There are a number of ways to make the MySQL Fabric node and its status and configuration data
highly available; this section describes one such approach, but other alternatives are possible. This
section can be used as a set of guidelines to build your own framework to add fault tolerance.

Note
@ The described Pacemaker setup is not currently a solution that has been
through QA.

7.1 Introduction

A MySQL Fabric instance is composed of a MySQL Fabric process together with a MySQL server.
The MySQL Fabric node contains the protocols and the executor, but is in itself stateless in that if it
for some reason crashes, re-starting permits it to continue where it left off. The configuration and state
information about the farm is instead stored in a separate MySQL server.

To provide a highly available solution, both components must be redundant. From a failure viewpoint,
these two components are treated as a single unit, meaning that each pair is collocated on a machine,
and if one of them fails, the stack on that machine fails.

There are two MySQL Fabric instances working in active and stand-by mode. The data stored in the
MySQL server is replicated through the Distributed Replicated Block Device, or simply DRBD. The
MySQL Fabric process is stateless though and must simply be started in the stand-by node in the
event of a failure.

Pacemaker and CoroSync are used to monitor whether the instances are running properly, and to
automate the failover and switchover operations. Pacemaker is responsible for monitoring components,
such as the MySQL Fabric Process, MySQL server, and DRBD, and also for executing the failover and
switchover operations. CoroSync is the communication infrastructure used by Pacemaker to exchange
massages between the two nodes.

Applications accessing this cluster do so through a Virtual IP address that is assigned to the active
node, specifically to the MySQL Fabric process, and is automatically migrated to the stand-by node
during a failover or switchover operation.

This section aims to describe how to set up this highly available cluster.

7.2 Pre-requisites

Two servers or virtual machines with:

57

http://drbd.linbit.com/
http://clusterlabs.org/

Target Configuration

A Linux distribution. This guide is based on Ubuntu 14.04, but any other distribution should work
equally well.

» Unpartitioned space on the local disk to create a DRBD patrtition.
» Network connectivity
» Both hosts must be accessible through ssh.

» User "mysql" and group "mysql" that have the same ids at the different nodes.

Linux is used because Pacemaker, Corosync, and DRBD are commonly available on this platform.

Note
@ Pacemaker, Corosync, and DRBD are not include with MySQL Fabric and need
to be installed separately for the target platform.

If Virtual Machines are used, make sure they run in different physical servers to avoid a single point of
failure. If possible, also make the network connectivity redundant.

7.3 Target Configuration

The two physical hosts are host 1. | ocal donmai n (192. 168. 1. 101) and host 2. | ocal dornai n
(192. 168. 1. 102). It is recommended that you do not rely on an external DNS service (as that is an
additional point of failure) and so these mappings should be configured on each hostin the / et c/
host s file.

A single Virtual IP (VIP) is shown in the figure (192. 168. 1. 200) and this is the address that the
application connects to when accessing the MySQL Fabric. Pacemaker is responsible for migrating this
between the two hosts.

One of the final steps in configuring Pacemaker is to add network connectivity monitoring in order

to attempt to have an isolated host stop its MySQL services to avoid a split-brain scenario. This is
achieved by having each host ping an external (not one part of the cluster) IP addresses - in this case
the network router (192. 168. 1. 1).

All the necessary software (i.e. binaries) must be installed in a regular partition, independent on each
node. MySQL socket (mysql . sock) and process-id (nysql . pi d) files are stored in a regular partition
as well. The MySQL Server configuration file (ny. cnf), the database files (dat a/ *) and the MySQL
Fabric configuration file (f abri c. cf g) are stored in a DRBD controlled file system that at any point in
time is only available on one of the two hosts.

58

Setting up and testing your system

Figure 7.1 MySQL Fabric Setup using DRBD and Pacemaker

Primary Secondary
Node Node
é 4
MySQL MysQL
Fabric Node Fabric Node
b
Pacemaker «f - -----------9----+ Pacemaker
o] DRED Replication | | = |
My Eﬁ} My E\E
& -

7.4 Setting up and testing your system
7.4.1 Configure Network

It is recommended that you do not rely on DNS to resolve host names and so the following
configuration files should be updated:

Example 7.1 /etc/hosts (Host 1)

127.0.0.1 | ocal host | ocal host. | ocal donai n
::1 | ocal host |ocal host. | ocal domai n
192. 168. 1. 102 host 2 host 2. | ocal domai n

Example 7.2 /etc/hosts (Host 2)

127.0.0.1 | ocal host | ocal host. | ocal donmai n
::1 | ocal host |ocal host. | ocal domain
192.168. 1. 101 host1 host 1.1 ocal domai n

7.4.2 Install all packages

Install the necessary packages through the apt-get repositories:

[root @ost1]# apt-get install drbd8-utils corosync pacemaker sysv-rc-conf |ibaiol
[root @ost2]# apt-get install drbd8-utils corosync pacemaker sysv-rc-conf |ibaiol

Download and install the common, server, and client components on both hosts. Our example
downloads and installs the bundled binaries from dev.mysqgl.com. Download the latest MySQL Server
release bundle and install it on both machines using the following commands:

[root @ost 1] # dpkg -i
[root @ost 1] # dpkg -i

nmysql - common_*ubunt ul4. 04_and64. deb
nmysql - communi ty-server _*ubuntul4. 04_and64. deb

59

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/

Configure DRBD

[root @ost1]# dpkg -i nysqgl -communi ty-client_*ubuntul4.04_and64. deb

[root @ost2]# dpkg -i nysqgl - conmon_*ubunt ul4. 04_and64. deb
[root @ost2]# dpkg -i nysgl - communi ty-server _*ubunt ul4. 04_and64. deb
[root @ost2]# dpkg -i nysqgl -comuni ty-client_*ubuntul4.04_and64. deb

Next, install MySQL Fabric. Download MySQL Fabric by downloading the MySQL Utilities and install it
using the following commands on each machine:

shel | > unzip nysql-utilities-*.zip
shell > cd nysqgl-utilities-*
shel | > python setup.py install

The script required to run MySQL Fabric with Pacemaker is not distributed with the packages and you
need to manually download and install the script on each machine:

[root @ost1]# cp nysqgl-fabric /usr/lib/ocf/resource.d/ heartbeat/.
[root @ost1]# chnod 755 /usr/|ib/ocf/resource. d/ heartbeat/nysql -fabric

[root @ost2]# cp nysqgl-fabric /usr/lib/ocf/resource.d/ heartbeat/.
[root @ost2]# chnod 755 /usr/|ib/ocf/resource. d/ heartbeat/nysql -fabric

7.4.3 Configure DRBD

If your nodes do not already have an empty partition that you plan to use for the DRBD, then create
one. If you are using a Virtual Machine, you can add a new storage to your machine. These details go
beyond the scope of this guide.

This partition is used as a resource, managed (and synchronized between nodes by DRBD); in order
for DRBD to be able to do this a new configuration file (in this case called cl ust er db_res. r es) must
be created in the / et ¢/ dr bd. d/ directory; the contents should look similar to:

resource clusterdb_res {
protocol C
handl ers {
pri-on-incon-degr “/usr/lib/drbd/ notify-pri-on-incon-degr.sh; /usr/lib/drbd/notify-energency-reboot. sh;
pri-lost-after-sb “/usr/lib/drbd/ notify-pri-lost-after-sb.sh; /usr/lib/drbd/notify-energency-reboot. sh;
local -io-error "/usr/lib/drbd/notify-io-error.sh; /usr/lib/drbd/notify-emergency-shutdown.sh; echo o >
fence-peer "/usr/lib/drbd/crmfence-peer.sh";

}
startup {
degr-wf c-ti meout 120; # 2 m nutes
out dat ed-wfc-ti meout 2; # 2 seconds
}
di sk {
on-i o-error detach;
}
net {

cram hmac-al g "shal";
shar ed- secret "cl usterdb";
after-sb-Opri disconnect;
after-sb-1pri di sconnect;
after-sb-2pri di sconnect;
rr-conflict disconnect;
}
syncer {
rate 10M
al -extents 257;
on- no- dat a- accessi bl e i o-error;
}
on host1 {
devi ce /dev/ drbdoO;
di sk / dev/ sdb;
address 192.168. 1. 101: 7788;

60

http://dev.mysql.com/downloads/utilities/

Configure DRBD

flexibl e-neta-di sk internal;
on host2 {

devi ce /dev/ drbdoO;

di sk /dev/ sdb;

address 192. 168. 1. 102: 7788;
met a- di sk i nternal;
}
}

The IP addresses and disk locations should be specific to the hosts that the cluster are using. In this
example the device that DRBD creates is located at / dev/ dr bdO - it is this device that is swapped
back and forth between the hosts by DRBD. This resource configuration file should be copied over to
the same location on the second host:

[root @ost1]# scp clusterdb_res.res host2:/etc/drbd. d/

The configuration file previously presented uses DRBD 8.3 dialect. Although DRBD 8.4 is the newest
version, some distributions might still contain DRBD 8.3. If you have installed DRBD 8.4 do not worry
though because it understands the DRBD 8.3 configuration file.

Before starting the DRBD daemon, meta data must be created for the new resource
(cl ust erdb_r es) on each host using the command:

[root @ost1]# drbdadm create-nd clusterdb_res

[root @ost2]# drbdadm create-nd clusterdb_res

It is now possible to start the DRBD daemon on each host:

[root @nost1]# /etc/init.d/ drbd start

[root @nost2]# /etc/init.d/ drbd start

At this point the DRBD service is running on both hosts but neither host is the "primary" and so the
resource (block device) cannot be accessed on either host; this can be confirmed by querying the
status of the service:

[root @nost1]# /etc/init.d/ drbd status

[root @nost2]# /etc/init.d/ drbd status

In order to create the file systems (and go on to storing useful data in it), one of the hosts must be
made the primary for the cl ust er db_r es resource, so execute the following on hostl

[root @ost 1] # drbdadm -- --overwite-data-of-peer primary all
[root @ost1]# /etc/init.d/ drbd status

The status output also shows the progress of the block-level syncing of the device from the new
primary (hostl) to the secondary (host2). This initial sync can take some time but it should not be
necessary to wait for it to complete in order to complete the other steps.

Now that the device is available on hostl, it is possible to create a file system on it:

[root @ost1]# nkfs -t ext4 /dev/drbdO

Note
@ The above does not need to be repeated on the second host as DRBD handles
the syncing of the raw disk data

61

Configure MySQL Server

In order for the DRBD file system to be mounted, the / var/ | i b/ nysql _dr bd directory should be
created on both hosts:

[root @ost 1] # nkdir /var/lib/ mysqgl _drbd
[root @ost 1] # chown nysql /var/lib/nmysql _drbd
[root @ost 1] # chgrp nysql /var/lib/nmysqgl _drbd
[root @ost 2] # nkdir /var/lib/mysqgl _drbd

[root @ost 2] # chown nysql /var/lib/nmysqgl _drbd
[root @ost 2] # chgrp nysqgl /var/lib/nmysqgl _drbd

On just the one (DRBD active) host, the DRBD file system must be temporarily mounted:

[root @ost 1] # nount /dev/drbd0O /var/lib/nysqgl _drbd

7.4.4 Configure MySQL Server

First, we have to stop the MySQL Server on both hosts and update configuration files and create new
data files. First, stop the MySQL server on both hosts using the command:

shell > /etc/init.d/ nmysqgl stop

Note
@ If you are using an Ubuntu distribution you need change the / et c/
appar nor . d/ usr. sbhi n. nysql d on both hosts according to the following diff:

@ - 40, 8 +40,8 @@
[usr/share/nysql/** r,

Allow data dir access

- Jvar/libl/nmysql/ r,

- [var/libl/nmysqgl/** rwk,

+ /var/lib/nmysqgl _drbd/ r,

+ /var/lib/nmysqgl _drbd/** rwk,

Allow log file access
/var/log/nysql/ r,

If you do not do that, the MySQL server may not be able to access files in the
new location and you may get strange errors since AppArmor prevents reading
and writing from the new locations.

To avoid any mismatches, the configuration file can be copied from host1 to host2 :

shel | > scp /etc/apparnor.d/usr.sbin.nysqld host2:/etc/apparnor.d/usr.sbin.nysqgld

Then restart AppArmor on both hosts using:

shel | > /etc/init.d/ apparnor restart

Edit the / et ¢/ nysql / ny. cnf file and setdat adir /var/|i b/ mysqgl _drbd/ dat a in the
[mysqgl d] section on both hosts.

To avoid any mismatches, the configuration file can be copied from host1 to host2 :

shel | > scp /etc/ nysqgl/nmy.cnf host2:/etc/ nysqgl/ny. cnf

Now the configuration file can be copied and the default database files populated on host1 using:

shel | > cp /etc/nysqgl/ny.cnf /var/lib/nmysqgl_drbd/ ny. cnf

62

https://wiki.ubuntu.com/AppArmor

Configure MySQL Fabric

shel | > nkdir /var/lib/nysqgl _drbd/data
shel | > nysqgl _install _db --no-defaults --datadir=/var/lib/nmysql _drbd/data --user=nysql

Configure some permissions on host1 :

shel | > chnod - R uog+rw /var/lib/ mysql _drbd
shel | > chown -R nysqgl /var/lib/nmysql _drbd
shel | > chnod 644 /var/|ib/ nysqgl _drbd/ ny. cnf

Start MySQL Server and configure users and access:
shell > /etc/init.d/ nysql start

shel | > nysqgl -u root -e "GRANT ALL ON *.* to 'root' @% ;"
shel | > nmysqgl -u root -e "CREATE USER 'fabric' @Il ocal host' |DENTIFIED BY 'secret';"
shell > nysqgl -u root -e "GRANT ALL ON fabric.* TO 'fabric' @Il ocal host' ;"

7.4.5 Configure MySQL Fabric

On just the one (DRBD active) host, do the following:

shell > cp /etc/nysql/fabric.cfg /var/lib/mysqgl _drbd/fabric.cfg
shel | > chnod 600 /var/lib/mysqgl _drbd/fabric.cfg
shel | > chown root:root /var/lib/mysqgl_drbd/fabric.cfg

Editthe /var /Il i b/ nmysql _drbd/fabric.cfg:

1. Setaddressto192. 168. 1. 200: 32274 inthe [pr ot ocol . xm r pc] section
2. Setpassword to passwor d in the [pr ot ocol . xm r pc] section

3. Setaddressto 192. 168. 1. 200: 32275 in the [protocol.mysql] section

4. Setthe password to passwor d in the [pr ot ocol . mysql] section

5. Setthe password to secr et inthe [st or age] section

Warning
O Do not change the address in the [st or age] section.

Take the opportunity to set the other options if you need/want to do so, specially the user/password in
the [servers] and[client] sections. Finally, create MySQL Fabric's state store as follows:

[root @ost 1] # nysql fabric --config /var/lib/nysqgl _drbd/fabric.cfg \
--param prot ocol . xm r pc. addr ess=| ocal host: 32274 \
--param prot ocol . mysql . addr ess=|l ocal host: 32275 nmanage setup

From this point onwards all resources are managed by the clustering software so they have to be
stopped:

[root @ost1]# /etc/init.d/ mysql stop
[root @ost 1] # unount /var/li b/ mysql _drbd
[root @ost 1] # dr bdadm secondary cl usterdb_res

Then DRBD should be stopped as well:

[root @ost1]# /etc/init.d/ drbd stop
[root @ost2]# /etc/init.d/ drbd stop

63

Configure Corosync and Pacemaker

7.4.6 Configure Corosync and Pacemaker

At this point, the DRBD file system is configured and initialized and both MySQL Fabric and MySQL
Server has been installed and the required files set up on the replicated DRBD file system. Pacemaker
and Corosync are installed but they are not yet managing the MySQL Fabric Process, MySQL Server
and DRBD resources to provide a clustered solution - the next step is to set that up.

Firstly, set up some network-specific parameters from the Linux command line and also in the
Corosync configuration file. The multi-cast address should be unique in your network but the port can
be left at 5405. The IP address should be based on the IP addresses being used by the servers but
should take the form of XX.YY.ZZ.0.

Copy an example to make your life easier:

shel | > cp /etc/corosync/ corosync. conf. exanpl e /etc/corosync/ corosync. conf

After editing it, it should have a content similar to what follows:

totem {
version: 2
crypto_ci pher: none
crypt o_hash: none
interface {
ringnunber: O
bi ndnet addr: 192. 168.1.0
ncastaddr: 239.255.1.1
ncast port: 5405
ttl: 1
}
}
| oggi ng {
to_syslog: yes
}

quor um {
provi der: corosync_vot equorum
two_node: 1
wait_for_all: 1
}
nodel i st {
node {
ring0_addr: 192.168.1. 101
nodei d: 1

}

node {
ring0_addr: 192.168.1.102
nodei d: 2

}

Be careful while setting up the network address that the Corosync binds to. For example, according
to the Corosync documentation, if the local interface is 192.168.5.92 with netmask 255.255.255.0, set
bindnetaddr to 192.168.5.0. If the local interface is 192.168.5.92 with netmask 255.255.255.192, set
bindnetaddr to 192.168.5.64, and so forth.

This makes Corosync automatically pick the network interface based on the network address provided.
It is also possible to set up a specific address, such as 192.168.5.92, but in this case the configuration
file is different per machine.

Create the / et ¢/ cor osync/ servi ce. d/ pcnk file to tell the Corosync to load the Pacemaker plug-
in:

service {
Load the Pacenaker C uster Resource Manager
nane: pacenaker
ver: 1

}

64

Configure Corosync and Pacemaker

Change the / et ¢/ def aul t/ cor osync file as follows:

start corosync at boot [yes|no]
START=yes

To avoid any mismatches, the configuration file can be copied across by using these commands on
host1:

shel | > scp /etc/corosync/ corosync. conf host2:/etc/corosync/corosync. conf
shel | > scp /etc/corosync/service. d/ pcnk host2:/etc/corosync/service. d/ pcnk
shel | > scp /etc/defaul t/corosync host2:/etc/default/corosync

Start Corosync on both hosts using:

shell > /etc/init.d/corosync start

Run t pcdunp to check whether Corosync is working or not:

shel | > tcpdunp -i ethO -n port 5405

To start the Pacemaker on hostl, execute the following command:

shell > /etc/init.d/ pacemaker start

Run Pacemaker's cluster resource monitoring command on host1 to view the status of the cluster:

shel | > crm non --one-shot -V

As we are configuring a cluster made up of just 2 hosts, when one host fails (or loses contact with the
other) there is no node majority (quorum) left and so by default the surviving node (or both if they are
still running but isolated from each other) would be shut down by Pacemaker. This is not the desired
behavior as it does not offer High Availability and so that default should be overridden (we later add
an extra behavior whereby each node shuts itself down if it cannot ping a 3 node that is external to the
cluster, thus preventing a split brain situation):

[root @ost1]# crm configure property no-quorum policy=i gnore

We turn STONITH (Shoot The Other Node In The Head) off as this solution relies on each node
shutting itself down in the event that it loses connectivity with the independent host:

[root @ost1]# crm configure property stonith-enabl ed=fal se

Roughly speaking, STONITH refers to one node trying to kill another in the even that it believes the
other has partially failed and should be stopped in order to avoid any risk of a split-brain scenario. To
prevent a healthy resource from being moved around the cluster when a node is brought back on-line,
Pacemaker has the concept of resource stickiness which controls how much a service prefers to stay
running where it is.

[root @ost1]# crm configure rsc_defaults resource-sticki ness=100

In the next steps, we describe how to configure the different resources as a cluster:

[root @ost1]# crm configure edit

This opens your default text editor, and you should use it to add the following lines into the cluster
configuration:

65

Configure Corosync and Pacemaker

primtive p_drbd_nysqgl ocf:linbit:drbd \
parans drbd_resource="clusterdb_res" \
op nonitor interval ="15s"
primitive p_fabric_nysql ocf:heartbeat: nmysql-fabric \
parans bi nary="/usr/ | ocal /bi n/ nysql fabric" \
config="/var/lib/nysql __drbd/fabric.cfg" \
op start timeout="120s" interval ="0" \
op stop tineout="120s" interval ="0" \
op nonitor interval ="20s" tineout="30s"
primtive p_fs_nysql ocf:heartbeat: Fil esystem\
parans devi ce="/dev/drbd0" directory="/var/lib/mysql _drbd" \
f st ype="ext 4"
primtive p_i p_nmysqgl ocf:heartbeat:|Paddr2 \
parans ip="192.168. 1. 200" ci dr _net mask="24" ni c="et h0"
primtive p_nysqgl ocf:heartbeat:nysqgl \
parans bi nary="/usr/sbi n/nysqgl d* \
config="/var/lib/nysqgl _drbd/ny.cnf" \
dat adi r="/var/li b/ nmysql _drbd/data" \
pi d="/var/run/ nysql d/ nysqgl d. pi d" \
socket ="/ var/run/ nmysql d/ mysql d. sock \
user="nysql " group="nysql " \
addi ti onal _par anet er s="- - bi nd- addr ess=I ocal host" \
op start tinmeout="120s" interval ="0" \
op stop tineout="120s" interval ="0" \
op nonitor interval ="20s" tineout="30s"
group g_nysqgl p_fs_mnysqgl p_ip_nysql p_nysql p_fabric_nysq
ms ns_drbd_nysqgl p_drbd_nysqgl \
nmet a mast er - max="1" mast er - node- max="1" cl one- max="2" \
cl one- node- max="1" notify="true"
col ocation c_nysqgl _on_drbd inf: g_nysqgl ns_drbd_nysql: Master
order o_drbd_before_nysqgl inf: nms_drbd_mnysql:pronpte g_nysql:start
primitive p_ping ocf:pacenaker: pi ng parans nanme="ping" \
mul tiplier="1000" host _|ist="192.168.1.1" \
op nonitor interval ="15s" tineout="60s" start tineout="60s"
clone cl _ping p_ping neta interleave="true"
l ocation | _drbd_master_on_ping ns_drbd_nysqgl rule $rol e="Master" \
-inf: not_defined ping or ping nunber:lte O

As the MySQL service (group) has a dependency on the host it is running on being the DRBD master,
that relationship is added by defining a co-location and an ordering constraint to ensure that the
MySQL group is co-located with the DRBD master and that the DRBD promotion of the host to the
master must happen before the MySQL group can be started:

col ocation c_nysqgl _on_drbd inf: g_nysqgl ns_drbd_nysql : Mast er
order o_drbd_before_nysqgl inf: ns_drbd_nysql:pronbte g nysql:start

In order to prevent a split-brain scenario in the event of network partitioning, Pacemaker can ping
independent network resources (such as a network router) and then prevent the host from being the
DRBD master in the event that it becomes isolated:

primtive p_ping ocf:pacenmaker: pi ng paranms nanme="ping" nultiplier="1000" \
host _|ist="192.168. 1. 1" \
op nonitor interval ="15s" tineout="60s" start tineout="60s"

clone cl _ping p_ping neta interleave="true"

l ocation | _drbd_master_on_ping ns_drbd_nysqgl rule $rol e="Master" \
-inf: not_defined ping or ping nunber:lte O

Check if everything is running fine using the following command:

[root @ost1]# crmnon --one-shot -V

Ensure the correct daemons are started at system boot

At this point, a reliable MySQL service is in place but it is also important to check that the correct
cluster services are started automatically as part of the servers' system startup. It is necessary for the
Linux startup to start the Corosync and Pacemaker services but not DRBD or MySQL Process and

66

Key administrative tasks

MySQL Server as those services are started on the correct server by Pacemaker. To this end, execute
the following commands on each host:

[root @ost1l] sysv-rc-conf drbd off
[root @ost 1] sysv-rc-conf corosync on
[root @ost 1] sysv-rc-conf nysql off
[root @ost 1] sysv-rc-conf pacenaker on

[root @ost2] sysv-rc-conf drbd off

[root @ost2] sysv-rc-conf corosync on
[root @ost2] sysv-rc-conf nysql off

[root @ost2] sysv-rc-conf pacenaker on

Note
@ MySQL Fabric is not installed as a service so there is nothing to do here for it.

7.5 Key administrative tasks

The cluster management tool can then be used to migrate the resources between machines:

[root @ostl ~]# crmresource migrate g_nysqgl host2

Specifying the g_nysql group migrates all resources in the group and implicitly any colocated
resources as well. If for any reason a resource cannot be properly started up or shut down, it becomes
unmanaged. In this case, we have to manually put it back to a managed state. For example, this could
mean that we would have to fix an issue that blocked the shutdown, kill or stop some processes, and
run the following command:

[root @ostl ~]# crmresource cleanup 'resource'

The components of this stack are designed to cope with component failures but there may be cases
where a sequence of multiple failures could result in DRBD not being confident that the data on the two
hosts is consistent. In the event that this happens DRBD breaks the connection. Should this happen,
we need to identify which of the two hosts has the correct data and then have DRBD resynchronize the
data; for the steps below, it is assumed that host1 has the correct data:

[root @ost 2] # dr bdadm secondary cl usterdb_res
[root @ost 2] # drbdadm -- --di scard-ny-data connect clusterdb_res

[root @ost 1] # dr bdadm primary clusterdb_res
[root @ost 1] # dr bdadm connect cl usterdb_res

Before executing these steps, it is advised to check the error log(s) and run the following command to
identify the DRBD's status:

shell> /etc/init.d/ drbd status

67

68

Chapter 8 Using Connector/Python with MySQL Fabric

Table of Contents

8.1 Installing Connector/Python with MySQL Fabric SUPPOItccovniiiiiiiiei e 70
8.2 Requesting a Fabric CONNECHIONc.uuiiii e e e e e 70
8.3 Providing Information to Choose a MYSQL SEIVENc..iiiiiiiiii e e e e e e e e e 72

MySQL Fabric provides data distribution and high-availability features for a set of MySQL database
servers.

Developers using Connector/Python can take advantage of its features to work with a set of servers
managed by MySQL Fabric. Connector/Python supports the following MySQL Fabric capabilities:

» Automatic node selection based on application-provided shard information (tables and key)

More specifically, Connector/Python Fabric support provides these features:

» Requesting a connection to a MySQL server managed by Fabric is as transparent as possible to
users already familiar with Connector/Python.

» Connector/Python is able to get a MySQL server connection given a high-availability group and a
mode specifying whether the connection is read-only or also permits updates (read-write).

» Connector/Python supports sharding and is able to find the correct MySQL server for a given table
or tables and key based on scope (local or global) and mode (read-only or read-write). RANGE and
HASH mechanisms are supported transparently to the user.

« Among secondary MySQL servers in the same group, read-only connections are load balanced.
Load balancing is based on a weight set for each MySQL server, using a Weighted Round-Robin
algorithm.

» Faulty MySQL servers are reported to Fabric, and failover is supported when failure occurs for a
server in a group.

» To speed up operations, Connector/Python caches information obtained from Fabric, such as group
and sharding information. Each time Connector/Python looks up data, it first checks its cache. When
information in the cache is too old, it is invalidated. By default, the time-to-live (TTL) for cached
information is 1 minute. However, Fabric itself can provide this TTL for its clients and this value is
used instead if greater than zero.

Cache information is also invalidated when failures occur, such as when a connection to a MySQL
server fails (invalidation applies to the group to which the server belongs).

 Fabric support applies to versions of Python supported by Connector/Python itself (see Connector/
Python Versions). In particular, you can use Connector/Python with Python 3.1 and later to establish
Fabric connections, even though Fabric does not support Python 3.

Connector/Python support for Fabric comprises the following module and classes:

* Module nysqgl . connect or. f abri c: All classes, functions, and constants related to MySQL
Fabric.

e Classfabric. MySQLFabri cConnect i on: Similar to MySQLConnect i on, it creates a connection
to the MySQL server based on application-provided information.

69

http://dev.mysql.com/doc/connector-python/en/connector-python-versions.html
http://dev.mysql.com/doc/connector-python/en/connector-python-versions.html

Installing Connector/Python with MySQL Fabric Support

e Class fabric. Fabri c: Manages the connection with a MySQL Fabric node; used by
MySQLFabr i cConnecti on.

» Other helper classes for caching information.

8.1 Installing Connector/Python with MySQL Fabric Support

Fabric support in Connector/Python requires version 1.2.0 or greater. Downloads are available at http://
dev.mysqgl.com/downloads/connector/python/ in various packages such as Zip archives, compressed
t ar archives, RPM packages, Debian packages, and Windows Installer packages.

Using the compressed t ar package, you can install MySQL Connector/Python as follows:

shel | > tar xzf nysql-connector-python-1.2.3.tar.gz
shel | > cd nysql - connect or - pyt hon-1. 2. 3
shel | > pyt hon setup. py instal

For more information, see Connector/Python Installation.

8.2 Requesting a Fabric Connection

The modules related to Fabric are located under nysql . connect or. f abri c. Importing f abri c
provides access to everything needed to use Fabric:

i nport nysqgl . connect or
from nysql . connector inport fabric

Traditionally, a MySQL connection is set up using the mysql . connect or. connect () method using
the connection arguments described at Connector/Python Connection Arguments, and the connection
is established immediately.

A request for a Fabric connection, by contrast, does not immediately connect. Instead, pass a f abri c
argument to the connect () call. This argument must be a dictionary. When Fabric connects to the
MySQL server that it provides, it uses the connection arguments other than the f abr i ¢ argument
(except that the uni x_socket connection argument is not supported).

To prepare a connection with Fabric, do this:

fabric_config = {
"host': 'fabric.exanple.con

}

fcnx = nysql . connector. connect (fabric=fabric_config, user= webuser'
passwor d=' webpass', dat abase=' enpl oyees')

If you prefer to pass a dictionary to connect (), do this:

config = {
"fabric': {
"host': 'fabric.exanple.con
b
"user': 'webuser'
' password': 'webpass'
' dat abase': ' enpl oyees'
}

fcnx = nysql . connector. connect (**confi g)
The f abr i ¢ dictionary argument permits these values:
» host : The host to connect to (required).

e port: The TCP/IP port number to connect to on the specified host (optional; default 32274).

70

http://dev.mysql.com/downloads/connector/python/
http://dev.mysql.com/downloads/connector/python/
http://dev.mysql.com/doc/connector-python/en/connector-python-installation.html
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

Requesting a Fabric Connection

e user nane: The user name of the account to use (optional).
» passwor d: The password of the account to use (optional).

e connect _att enpt s: The number of connection attempts to make before giving up (optional;
default 3).

« connect del ay: The delay in seconds between attempts (optional; default 1).

e report _errors: Whether to report errors to Fabric while accessing a MySQL instance. (optional,
default Fal se).

» ssl| _ca: The file containing the SSL certificate authority (optional).
* ss| _cert: The file containing the SSL certificate file (optional).
» ssl| _key: The file containing the SSL key (optional).

» prot ocol : The connection protocol to use (optional; default xim r pc). Permitted values are xmni r pc
(use XML-RPC protocol) and nysql (use MySQL client/server protocol). If a value of nmysql is
specified, the default port becomes 32275, although that can be changed with an explicit por t value.

The user nane, password, report _errors,ssl _ca,ssl _cert andssl _key options were
added in Connector/Python 1.2.1. It is possible to establish an SSL connection using only the ssl _ca
argument. The ssl _key and ssl _cert arguments are optional. However, when either is given, both
must be given or an At t ri but eEr r or is raised.

The pr ot ocol option was added in Connector/Python2 2.1.2.

It is also possible to pass a Fabri c() object instance as the f abri ¢ argument:

fabric_config = {
"host': 'fabric.exanple.com,

}

fabinst = Fabric(**fabric_config)

fcnx = nysql . connect or. connect (f abri c=f abi nst, user='webuser'
passwor d=' webpass', dat abase='enpl oyees')

Or:

fabric_config = {

"host': 'fabric.exanple.com,
}
fabi nst = Fabric(**fabric_config)
config = {
"fabric': fabinst,
"user': 'webuser’
' password' : ' webpass'
' dat abase' : ' enpl oyees'
}

fcnx = nysql . connect or. connect (**confi g)
Once a Fabri c() objectis used, it is cached and reused.

Another (less preferred) way to establish a Fabric connection is pass configuration information to the
MySQLFabri cConnect i on class to create a connection with a Fabric node. This is similar to using
the nysql . connect or. connect () method or MySQLConnect i on() class with the addition of the
required f abr i ¢ argument:

config = {
"fabric': {
"host': 'fabric.exanple.con,

h

71

Error Reporting

‘user': 'webuser’
' password': ' webpass'

}

fenx = fabric. MySQLFabri cConnecti on(**confi g)

Error Reporting

Connector/Python can report errors to Fabric that occur while accessing a MySQL instance. The
information can be used to update the backing store and trigger a failover operation, provided that
the instance is a primary server and Fabric has received a sufficient number of problem reports from
different connectors.

» The f abri c dictionary argument to the connect () method accepts areport _errors value. Its
default value is Fal se; pass a value of Tr ue to enable error reporting to Fabric.

» To define which errors to report, use the extra_fail ure_report () function:

from mysql.connector.fabric inport extra_failure_report
extra_failure_ report([error_code 0O, error_code 1, ...])

8.3 Providing Information to Choose a MySQL Server

If you create a Fabric connection without providing any information about which data to access, the
connection cannot function. To access a database, you must provide the driver with either of these
types of information:

» The name of a high-availability group known by the MySQL Fabric instance to which you've

connected. In such a group, one server is the master (the primary) and the others are slaves
(secondaries).

group.

The following discussion describes both ways of providing information. You do this by setting one or
more properties of the Fabric connection object using its set _pr operty() method, so the discussion
begins by setting forth the sharding-related properties.. In the examples, f cnx represents the Fabric
connection object, created as shown in Section 8.2, “Requesting a Fabric Connection”.

is requested from the Fabric connection object or when its cnd_query() or

Note
@ set _property() does not connect. The connection is opened when a cursor
cnd_query_iter () method is invoked.

These set _property() arguments are shard-related:

» gr oup: A high-availability group name

t abl es: The sharding table or tables

» node: Whether operations are read/write or read only
e scope: Whether operations are local or global

» key: The key that identifies which row to affect

group and t abl es are mutually exclusive, so you specify only one of them. Applicability of the
remaining arguments depends on which of gr oup or t abl es you use:

If you specify gr oup:

72

Providing Information to Choose a MySQL Server

e node is optional. The defaultis f abr i c. MODE_READWRI TE if this property is omitted.
» scope is inapplicable. Do not specify it.

» key is inapplicable. Do not specify it.

If you specify t abl es:

» node is optional. The default is f abr i c. MODE_READWRI TE if this property is omitted.
» scope is optional. The default is f abri c. SCOPE_LOCAL if this property is omitted.

» key:Ifscopeisfabric. SCOPE_LOCAL, key is required to indicate which row to affect. If scope is
fabric. SCOPE_G.OBAL, key is inapplicable; do not specify it.

When the node argument is applicable, these values are permitted:
» fabric. MODE_READWRI TE: Connect to a master server. This is the default.

« fabric. MODE_READONLY: Connect to a slave if one is available, to the master otherwise. If there
are multiple secondary MySQL servers, load balancing is used to obtain the server information.

When the scope argument is applicable, these values are permitted:
» fabric. SCOPE_LOCAL: Local operation that affects the row with a given key. This is the default.
» fabric. SCOPE_GLOBAL: Global operation that affects all rows.

Providing the name of a high-availability group specifies that we know exactly the set of database
servers that with which to interact. To do this, set the gr oup property using the set _property()
method:

fcnx. set _property(group='nyG oup')

Connector/Python to do so based on information from the MySQL Fabric server.

Whether operations use RANGE or HASH is transparent to the user. The information is provided by
Fabric and Connector/Python uses the correct mechanism automatically.

To specify shard tables and shard keys, use the t abl es and key attributes of the set _pr operty()
method.

The format of each shard table is usually given as ' db_nane. t bl _nane' . Because one or more

tables can be specified, the t abl es argumentto set _property() is specified as a tuple or list:

fcnx. set _property(tabl es=['enpl oyees. enpl oyees'], key=40)
cur = fcnx. cursor ()

do operations for enployee with enp_no 40

fcnx. cl ose()

By default, operations occur in local scope, or the scope property can be given to specify local or
global scope explicitly. For local operations (as in the preceding example), the key argument must be
specified to indicate which row to use. For global operations, do not specify the key attribute because
the operation is performed on all rows in the table:

fcnx. set _property(tabl es=[' enpl oyees. enpl oyees'], scope=fabric. SCOPE_GL.OBAL)
cur = fcnx. cursor()

cur. execut e(" UPDATE enpl oyees SET | ast_nane = UPPER(| ast_nane)")

cnx. comm t ()

fcnx. cl ose()

73

Providing Information to Choose a MySQL Server

The default mode is read/write, so the driver connects to the master. The node property can be given
to specify read/write or read-only mode explicitly:

fcnx. set _property(group="'nyG oup', node=fabric. MODE_READWRI TE)
cur = fecnx. cursor ()

cur . execut e(" UPDATE enpl oyees SET | ast_nane = UPPER(| ast_nane)")
cnx. commt ()

fcnx. cl ose()

Applications for which read-only mode is sufficient can specify a node attribute of
fabri c. MODE_READONLY. In this case, a connection is established to a slave if one is available, or to
the master otherwise.

Connector/Python 2.0.1 or later supports RANGE _STRI NGand RANGE_DATETI VE as sharding types.
These are similar to the regular RANGE sharding type, but instead of an integer key, require a value of a
different type:

» For RANGE_STRI NG, a UTF-8 encoded string key is required. For example:

cnx. set _property(tabl es=["enpl oyees. enpl oyees"],
key=u' enpl oyee_nane', node=fabric. MODE_READONLY)

Only Unicode strings are supported. Any other type given when using a shard defined using
RANGE_STRI NGcauses a Val ueEr r or to be raised.

» For RANGE DATETI ME, a datetime or date object key is required. For example, to get the shard
which holds employees hired after the year 2000, you could do the following, with lower bounds set
as "group1/1980-01-01, group2/2000-01-01":

cnx. set _property(tabl es=["enpl oyees. enpl oyees"],
key=dat et i ne. dat e(2000, 1, 1), node=fabric. MODE _READONLY)

If the lower bounds included a time, it would have been like this:

cnx. set _property(tabl es=["enpl oyees. enpl oyees"],
key=dat et i ne. dat eti me(2000, 1, 1, 12, 0, 0),
nmode=f abri c. MODE_READONLY)

Only dat et i me. dat et i ne and dat et i nme. dat e values are supported. Any other type given when
using a shard defined using RANGE_DATETI VE causes a Val ueEr r or to be raised.

74

Chapter 9 Using Connector/J with MySQL Fabric

Table of Contents

9.1 Installing Connector/J with MySQL Fabric SUPPOItccouuiiiiiiii e 75
9.2 Loading the Driver and Requesting a Fabric CONNECLIONccooiiuiiiiiiiiiiiie e 75
9.3 Providing Information to Choose a MYySQL SEIVETcciiuiiiiiiiiiii e 76
9.4 MySQL Fabric Configuration for RUNNING SamMPIESc..iiiiiiiiiiii e 77
9.5 RUNNING TESES .. itniiiiii ettt ettt ettt ettt ettt ettt e ettt b s et e et e et e et e et e et e e e e aba e eeennes 79
9.6 Running DemonStration PrOGIAMSciieuuuiiiiii ettt et e e et et e et e e e eaaa e eeenes 79
9.7 A Complete Example: Working with Employee Datacocoeviiiiiiiiiiiiiiieeee e 80
9.8 How Connector/J Chooses a MYSQL SEIVETiiiiiiiiiiiii e 84
9.9 Using Hibernate with MySQL FabIiCc.uuiiiiiiii et 84
9.10 Connector/J Fabric SUPPOrt REFEIENCEoiiiiiiiiiii e 87

9.10.1 CONNECHON PIrOPEITIESueiieii ettt ettt ettt ettt et e ea e e e naa e eenaas 87

9.10.2 FabricMySQLCONNECHION AP ..o 88

MySQL Fabric provides data distribution and high-availability features for a set of MySQL database
servers.

Developers using Connector/J can take advantage of its features to work with a set of servers
managed by MySQL Fabric. Connector/J supports the following MySQL Fabric capabilities:
» Automatic node selection based on application-provided shard information (table and key)

» Read/write splitting within a MySQL Fabric server group

» Reporting errors to the Fabric node as part of the distributed failure detector

The Fabric Client library for Java, which is included with Connector/J, is comprised of the following
packages:

» src/com nysql /fabric/xm rpc: Classes for core implementation of the XML-RPC protocol

e src/com nysql / fabri c: Classes for interacting with the MySQL Fabric management system
using the XML-RPC protocol

e src/com nysql /fabric/jdbc: Classes for JDBC access to MySQL servers based on shard
information

e src/com nysql /fabric/hibernate: Fabri cMul ti Tenant Connecti onProvi der.java
class enabling integration with Hibernate

e testsuite/fabric:JUnittests

e src/deno/ fabric: Usage samples

9.1 Installing Connector/J with MySQL Fabric Support

Fabric support is available in Connector/J 5.1.30 and later. Please refer to Connector/J documentation
for installation instructions.

9.2 Loading the Driver and Requesting a Fabric Connection

When using Connector/J with MySQL Fabric, you must provide the host name and port of the MySQL
Fabric server instead of the database server. The connection string must follow the same form it
normally does, with the addition of the f abr i ¢ keyword, as follows:

jdbc: nysql : fabric://fabrichost: 32274/ dat abase

75

Providing Information to Choose a MySQL Server

The user name and password provided to the connection are used for authentication with the
individual database servers. Fabric authentication parameters can be given in the URL using the
fabri cUser nane and f abri cPasswor d properties. e.g.

jdbc: nysql : fabric://fabrichost: 32274/ dat abase?f abri cUser nane=adm n&f abri cPasswor d=secr et

no authentication is used. This should only be done when authentication has

Note
@ If the username and password to authenticate to the Fabric node are omitted,
been disabled on the Fabric node.

Note
@ If you are using Java 5, you must manually load the driver class before
attempting to connect.

O ass. for Nane("com nysql . fabric. jdbc. Driver”);

Connection now proceeds normally.

Connecti on conn = Driver Manager . get Connecti on(
"jdbc: mysql : fabric://fabrichost: 32274/ dat abase",
user,
passwor d) ;

To use the Connector/J APls that support MySQL Fabric, you must cast the Connect i on object to the
public interface that provides the necessary methods. The interfaces are:

e« com nysqgl . fabric.jdbc. Fabri cMySQ.Connect i on: JDBC3 interface, compatible with Java 5
and later

e com nysql . fabric.jdbc. JIDBCAFabri cMySQLConnect i on: JDBC4 interface, compatible with
Java 6 and later. This interface must be used to access JDBC4 APIs on the connection.

9.3 Providing Information to Choose a MySQL Server

If you create a Fabric connection without providing any information about which data to access,
the connection cannot function. To access a database, you must provide the driver with one of the
following:

» The name of a high-availability group known by the MySQL Fabric instance to which you've

connected. In such a group, one server is the master (the primary) and the others are slaves
(secondaries).

» A shard table, and optionally a shard key, to guide Connector/J in selecting a high-availability group.

reference only a single shard mapping or the query is rejected. A shard mapping can include several
tables but they must be sharded on the same index.

The following discussion describes both ways of providing information. In the examples, conn
represents the Fabric connection object, created as shown in Section 9.2, “Loading the Driver and
Requesting a Fabric Connection”.

Providing the name of a high-availability group specifies that we know exactly the set of database
servers with which to interact. We can do this in two ways.

e The simplest method is to include the name of the server group in the connection string. This is
useful if a connection needs to access data only in that server group. It is also possible to set the
name of the server group in this way initially and to change it programatically later.

76

MySQL Fabric Configuration for Running Samples

/] provide the server group as a connection property
Connecti on conn = Driver Manager . get Connect i on(
"jdbc: mysql : fabric://fabrichost: 32274/ dat abase?f abri cServer G oup=nyG oup") ;

« If we connect without specifying a server group, or want to change it later, we can use the
JDBCAFabri cMySQLConnect i on interface to set the server group nane.

JDBCAFabri cMySQLConnect i on conn;
/] connection initialization here
conn. set Server G oupNane(" myGr oup") ;

Providing shard information avoids the need to choose a high-availability group manually and permits

/] provide the shard table as a connection property
Connecti on conn = Driver Manager . get Connect i on(
"jdbc: mysql : fabric://fabrichost: 32274/ dat abase?f abri cShar dTabl e=enpl oyees. enpl oyees") ;

The following example sets up the connection to perform a join between the enpl oyees and
depart ment s tables. Details on how to provide the shard key are given in the next step.

JDBC4Fabri cMySQLConnecti on conn;

/'l provide the set of query tables to the connection
conn. addQuer yTabl e(" depart ments");

conn. addQuer yTabl e(" enpl oyees") ;

« In many cases, you want to work with different sets of data at different times. You can specify the
shard key to change the set of data to be accessible.

JDBCAFabri cMySQLConnect i on conn;
/1 connection initialization here
conn. set ShardKey("40"); // work with data related to shard key = 40

In summary, it is necessary to provide the name of a server group or a shard table and possibly shard

9.4 MySQL Fabric Configuration for Running Samples

To run JUnit tests from t est sui t e/ f abri ¢ or demonstration examples from sr ¢/ deno/ f abri c,
you must configure the MySQL Fabric test environment as follows.

1. Setup MySQL servers.

e nmysql -fabric-confi g: The backing store for Fabric configuration. Used internally by Fabric
to store the server list, shard mappings, and so forth. You set up this server instance during the
MySQL Fabric setup procedure.

e mysql - gl obal : The only server in the “global” group. Used to send DDL commands and update
any data not in the shard data set.

77

MySQL Fabric Configuration for Running Samples

» Default location: 127.0.0.1:3401

« Config properties: com nysql . fabric. testsuite. gl obal . host,

com nysql . fabric.testsuite. gl obal. port
e nysgql - shar d1: First shard of sharded data set
 Default location: 127.0.0.1:3402

« Config properties: com nysql . fabri c. testsuite.shardl. host,

com nysql . fabric.testsuite.shardl. port
e nmysgl - shar d2: Second shard of sharded data set
 Default location: 127.0.0.1:3403

« Config properties: com nysql . fabri c. testsuite. shard2. host,
com nysql . fabric.testsuite.shard2. port

All except nysql - fabri c- confi g should have server -i d set to a distinct value and the
following entries added to ny. cnf:

| og-bin = nysql-bin

| og- sl ave-updates = true
enforce-gtid-consistency = true
gtid-node = on

Set up sharding. The user name and password of the account used to manage Fabric
(Section 2.3.1, “Create the Associated MySQL Users”) must be specified in Fabric's configuration
file (Section 2.3.2, “Configuration File").

» Create the global group:

shel | > nysql fabric group create fabric_testl gl oba
shel | > nysql fabric group add fabric_testl global 127.0.0.1: 3401
shel | > nysql fabric group pronote fabric_testl gl oba

¢ Create shard groups:

shel | > nysql fabric group create fabric_testl shardl
shel | > nysql fabric group add fabric_testl shardl 127.0.0. 1: 3402
shel | > nysql fabric group pronpte fabric_testl shardl
shel | > nysql fabric group create fabric_testl shard2

shel | > nysql fabric group add fabric_testl shard2 127.0.0. 1: 3403
shel | > nysql fabric group pronpte fabric_testl shard2

¢ Create the sharding definition:

shel | > nysql fabric sharding create_definition RANGE fabric_testl gl oba

Notice the return value in the command output; for example, return = 1. This is the
$MAPPING_ID used in the following commands

shel | > nysql fabric sharding add_tabl e $MAPPI NG | D enpl oyees. enpl oyees enp_no

* Create the shard index:

78

http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#option_mysqld_server-id

Running Tests

shel | > nysql fabric shardi ng add_shard $MAPPI NG | D \
fabric_testl shardl/0, fabric_testl _shard2/ 10000 --state=ENABLED

9.5 Running Tests

The t est - f abri c target in the bui | d. xm file runs JUnit tests on these servers. It requires only the
setup described in Section 9.4, “MySQL Fabric Configuration for Running Samples”. All necessary
tables and data are created during test run.

The parameters for the servers must be provided to Ant to verify that the correct information is received
from the Fabric node. This includes server host names and ports. This data can be provided on the
command line with -D arguments to Ant orin a bui | d. properti es file. This file should be placed in
the root of the source directory, where bui | d. xm is located. Based on the information given so far,
this file would contain the following entries:

com nysql . fabric.testsuite. host name=l ocal host
com nysql . fabric.testsuite. port=32274

com nysql . fabric.testsuite.fabricUsername=adni n
com nysql . fabric.testsuite.fabri cPassword=secret

. testsuite.usernane=r oot
.testsuite. password=
.testsuite. dat abase=enpl oyees
.testsuite. gl obal.host=127.0.0.1
.testsuite. gl obal . port=3401
testsuite.shardl. host=127.0.0. 1
.testsuite. shardl. port=3402
.testsuite. shard2. host =127.0.0. 1
.testsuite. shard2. port=3403

com nysql . fabri
com nysql . fabri
com nysql . fabri
com nysql . fabri
com nysql . fabri
com nysql . fabri
com nysql . fabri
com nysql . fabri
com nysql . fabri

O0000000O0

Sample Ant calls are shown below. If the parameters are specified in your bui | d. properti es file, it
is not necessary to include them on the command line.

shel | > JAVA HOVE=/ opt/j dk1.5/ ant \
-Dcom nysql . fabric.testsuite. password=pwd \
-Dcom nysql . fabric.testsuite. gl obal . port=3401 \
-Dcom nysql . fabric.testsuite.shardl. port=3402 \
-Dcom nysql . fabric.testsuite.shard2. port=3403 \
test-fabric

9.6 Running Demonstration Programs

To run the demo programs, you must set up the MySQL Fabric environment as described in
Section 9.4, “MySQL Fabric Configuration for Running Samples”. After that, you can use the deno-
fabric-* Anttargets.

shel | > JAVA HOVE=/ opt /j dk1.5/ ant \
-Dcom nysql . fabric.testsuite. password=pwd \
deno-fabric

These targets invoke all demo programs except Hibernate demos. You should use the deno-f abri c-
hi ber nat e target instead:

shel | > JAVA HOVE=/ opt /] dk1. 6/ ant \
-Dcom nysql . fabric.testsuite. password=pwd \
deno-f abri c- hi bernat e

79

A Complete Example: Working with Employee Data

specific to Hibernate 4 and higher which requires Java 6+. That is why we do
not provide the FabricMultiTenantConnectionProvider class or related demos

Note
E You need Java 6+ to use Hibernate Fabric integration. Multi-tenancy is a feature
compatible with Java 5.

9.7 A Complete Example: Working with Employee Data

This document demonstrates two possible ways of working with sharded data relating to employees.
To run this program, you must set up a shard mapping for the employees table in MySQL Fabric as
described in Section 9.4, “MySQL Fabric Configuration for Running Samples”.

This code can be found in the distribution package in sr ¢/ deno/ f abri c/ Enpl oyeesJdbc. j ava.

/*
Copyright (c) 2013, 2014, Oacle and/or its affiliates. Al rights reserved.

The MySQL Connector/J is licensed under the terns of the GPLv2

<http://ww. gnu. org/licenses/old-1icenses/gpl-2.0.htm >, [|ike nost MySQL Connectors.
There are special exceptions to the terms and conditions of the GPLv2 as it is applied to
this software, see the FLOSS License Exception

<htt p://ww. nysql . conf about /| egal /| i censi ng/ f oss-exception. ht m >.

This programis free software; you can redistribute it and/or nodify it under the terns
of the GNU General Public License as published by the Free Software Foundation; version 2
of the License.

This programis distributed in the hope that it will be useful, but WTHOUT ANY WARRANTY;
wi t hout even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPGCSE.
See the G\U General Public License for nore details.

You shoul d have received a copy of the GNU General Public License along with this
program if not, wite to the Free Software Foundation, Inc., 51 Franklin St, Fifth
Fl oor, Boston, MA 02110-1301 USA

*/
package denv. fabri c;

i mport java.sql.Connecti on;

i mport java.sql.DriverManager;

i mport java.sgl.PreparedStatenment;
import java.sql.Statenment;

import java.sql.ResultSet;

i mport com nysql . fabric.jdbc. Fabri cM/SQ.Connecti on;

/**

* Denonstrate working with enpl oyee data in MySQL Fabric with Connector/J and the JDBC APl s.
*/

public class Enpl oyeesJdbc {
public static void main(String args[]) throws Exception {

String hostname = System get Property("com nysql.fabric.testsuite.hostnanme");
String port = System getProperty("comnysql.fabric.testsuite.port");

String database = System get Property("com nysql.fabric.testsuite.database");
String user = System get Property("com nysql.fabric.testsuite.username");
String password = System get Property("com nysql.fabric.testsuite. password");

String baseUrl = "jdbc:nysqgl:fabric://" + hostname + ":" + |nteger.valueO (port) + "/";

/! Load the driver if running under Java 5

if (!comnysqgl.jdbc. Util.isJddbc4()) {

Cl ass. forNane("com nysql . fabric.jdbc. Fabri cMySQLDri ver");
}

/1l 1. Create database and table for our deno
Connecti on rawConnecti on = Dri ver Manager . get Connect i on(

80

A Complete Example: Working with Employee Data

baseUr|l + "nysql ?fabri cServer G oup=fabric_test1l_gl obal ",
user,
passwor d) ;
St at enent statement = rawConnecti on. creat eStatement ();
st at ement . execut eUpdat e("creat e database if not exists enpl oyees");
stat ement . cl ose();
rawConnect i on. cl ose();

/1 W shoul d connect to the global group to run DDL statenents,
I/l they will be replicated to the server groups for all shards.

/'l The 1-st way is to set its nane explicitly via the
/1 "fabricServer Group"” connection property
rawConnecti on = Driver Manager . get Connecti on(
baseUr| + database + "?fabricServer Goup=fabric_testl_ gl obal",
user,
passwor d) ;
statement = rawConnecti on. createStatenent();
st at ement . execut eUpdat e("creat e database if not exists enpl oyees");
stat ement . cl ose();
rawConnect i on. cl ose();

/1l The 2-nd way is to get inplicitly connected to gl obal group
/'l when the shard key isn't provided, ie. set "fabricShardTabl e"
/] connection property but don't set "fabricShardKey"
rawConnecti on = Driver Manager . get Connecti on(
baseUr|l + "enpl oyees" + "?fabricShardTabl e=enpl oyees. enpl oyees",
user,
passwor d) ;
/1l At this point, we have a connection to the global group for
/1 the 'enpl oyees. enpl oyees' shard mappi ng.
statement = rawConnecti on. creat eStatenment();
st at ement . execut eUpdat e("drop table if exists enpl oyees");
st at ement . execut eUpdat e("create tabl e enpl oyees (enp_no int not null," +
"first_nanme varchar(50), |ast_name varchar(50)," +

"primry key (emp_no))");
[/l 2. Insert data

/] Cast to a Fabric connection to have access to specific nethods
Fabri cMySQLConnecti on connecti on = (Fabri cMySQLConnecti on)rawConnecti on;

/] exanpl e data used to create enpl oyee records

Integer ids[] = new Integer[] {1, 2, 10001, 10002};

String firstNames[] = new String[] {"John", "Jane", "Andy", "Alice"};
String | astNames[] = new String[] {"Doe", "Doe", "WIley", "Wein"},;

/'l insert enployee data
Prepar edSt at enent ps = connecti on. prepar eSt at enent (
"I NSERT | NTO enpl oyees. enpl oyees VALUES (?,?,?)");
for (int i =0; i < 4; ++i) {
/'l choose the shard that handles the data we interested in
connecti on. set ShardKey(ids[i].toString());

Il performinsert in standard fashion
ps.setint(1, ids[i]);

ps.setString(2, firstNanes[i]);
ps.setString(3, |astNames[i]);

ps. execut eUpdat e() ;

}

/1 3. Query the data from enpl oyees
System out . printl n("Queryi ng enpl oyees");
Systemout. format ("%’s | % 30s | % 30s%", "enp_no", "first_nane", "last_nane");
Systemout.println("-------- e R R R R ")
ps = connecti on. pr epar eSt at ement (

"sel ect enp_no, first_nane, |ast_nane from enpl oyees where enp_no = ?");
for (int i =0; i < 4; ++i) {

/1l we need to specify the shard key before accessing the data
connecti on. set ShardKey(ids[i].toString());

81

A Complete Example: Working with Employee Data

ps.setlnt(1, ids[i]);

Resul t Set rs = ps. executeQuery();

rs.next();

Systemout. format ("%d | % 30s | % 30s%", rs.getInt(1), rs.getString(2), rs.getString(3));
rs.close();

ps. cl ose();

/1 4. Connect to the global group and clean up

connecti on. set Server G oupNane("fabric_test1l gl obal");

st at ement . execut eUpdat e("drop table if exists enpl oyees");
stat ement . cl ose();

connecti on. cl ose();

Here is an alternative using the DataSource API:

/*
Copyright (c) 2015, Oacle and/or its affiliates. Al rights reserved.

The MySQL Connector/J is licensed under the terns of the GPLv2

<http://ww. gnu.org/licenses/old-licenses/gpl-2.0.htm >, |ike nost MySQL Connectors.
There are special exceptions to the terms and conditions of the GPLv2 as it is applied to
this software, see the FOSS License Exception

<http://ww. nysql . conf about /| egal /| i censi ng/ f oss-exception. ht nm >.

This programis free software; you can redistribute it and/or nodify it under the terns
of the GNU General Public License as published by the Free Software Foundation; version 2
of the License.

This programis distributed in the hope that it will be useful, but WTHOUT ANY WARRANTY;
wi thout even the inplied warranty of MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPGCSE.
See the G\NU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License along with this
program if not, wite to the Free Software Foundation, Inc., 51 Franklin St, Fifth
Fl oor, Boston, MA 02110-1301 USA

*/
package deno. fabri c;

i mport java.sgl.Connecti on;

import java.sql.DriverManager;

i mport java.sql.PreparedStatenent;
import java.sql.ResultSet;

import java.sql.Statenment;

i mport com nysql . fabric.jdbc. Fabri cM/SQ.Connecti on;
i mport com nysql . fabric.jdbc. Fabri cM/SQ.Dat aSour ce;

/**
* Denpnstrate working with enpl oyee data in MySQL Fabric with Connector/J and the JDBC APl s via a DataSour
*/
publ i c cl ass Enpl oyeesDat aSource {
public static void main(String args[]) throws Exception {

String hostname = System get Property("com nysql.fabric.testsuite.hostnanme");

String port = System getProperty("“comnysql.fabric.testsuite.port");

String database = System get Property("com nysql.fabric.testsuite.database");

/'l credentials to authenticate with the SQ. nodes

String user = System get Property("com nysql.fabric.testsuite.usernanme");

String password = System get Property("com nysql.fabric.testsuite. password");

/'l credentials to authenticate to the Fabric node

String fabricUsername = System get Property("com nmysql.fabric.testsuite.fabricUsernane");
String fabricPassword = System get Property("com nmysql.fabric.testsuite.fabricPassword");

/'l setup the Fabric datasource to create connections
Fabri cMySQLDat aSour ce ds = new Fabri cMySQ.Dat aSour ce() ;

82

A Complete Example: Working with Employee Data

ds. set Ser ver Nane(host nane) ;

ds. set Port (I nteger.val ueX (port));

ds. set Dat abaseNane(dat abase) ;

ds. set Fabri cUser nanme(f abri cUser nane) ;
ds. set Fabri cPasswor d(f abri cPassword) ;

/! Load the driver if running under Java 5
if (!comnysqgl.jdbc. Util.isJddbc4()) {

Cl ass. for Nane("com nysql . fabric.jdbc. Fabri cMySQ.Dri ver");
}

/1 1. Create database and table for our denp

ds. set Dat abaseNanme("mysqgl "); // connect to the “nmysqgl database before creating our "enpl oyees’
ds. set Fabri cServer Goup(“fabric_testl global"); // connect to the global group

Connecti on rawConnecti on = ds. get Connecti on(user, password);

St at enent statement = rawConnecti on. creat eStatenment ();

st at ement . execut eUpdat e("creat e database if not exists enpl oyees");

stat ement . cl ose();

rawConnect i on. cl ose();

/1 W shoul d connect to the global group to run DDL statements, they will be replicated to the

/'l The 1-st way is to set its nane explicitly via the "fabricServer G oup" datasource property
ds. set Fabri cServer G oup("“fabric_test1l gl obal");

rawConnecti on = ds. get Connecti on(user, password);

statement = rawConnecti on. createStatenent();

st at ement . execut eUpdat e("create database if not exists enpl oyees");

stat ement . cl ose();

rawConnect i on. cl ose();

/1l The 2-nd way is to get inplicitly connected to gl obal group when the shard key isn't provide
/'l don't set "fabricShardKey"

ds. set Fabri cServer Group(null); // clear the setting in the datasource for previous connections

ds. set Fabri cShar dTabl e(" enpl oyee. enpl oyees");

rawConnecti on = ds. get Connecti on(user, password);

/Il At this point, we have a connection to the global group for the 'enployees. enpl oyees' shard
statement = rawConnecti on. creat eStatenent();

st at ement . execut eUpdat e("drop table if exists enpl oyees");

st at ement . execut eUpdat e("create tabl e enpl oyees (enp_no int not null, first_name varchar(50), |

/1l 2. Insert data

/] Cast to a Fabric connection to have access to Fabric-specific nethods
Fabri cMySQ.Connecti on connecti on = (Fabri cMySQLConnecti on) rawConnecti on;

/] exanple data used to create enpl oyee records

Integer ids[] = new Integer[] { 1, 2, 10001, 10002 };

String firstNames[] = new String[] { "John", "Jane", "Andy", "Alice" };
String | astNames[] = new String[] { "Doe", "Doe", "WIley", "Win" };

/'l insert enployee data
Prepar edSt at enent ps = connecti on. prepareSt at enent ("1 NSERT | NTO enpl oyees. enpl oyees VALUES (?, ?
for (int i =0; i < 4; ++i) {

/'l choose the shard that handles the data we interested in

connecti on. set ShardKey(ids[i].toString());

Il performinsert in standard fashion
ps.setint(1, ids[i]);

ps.setString(2, firstNanes[i]);
ps.setString(3, |astNames[i]);

ps. execut eUpdat e() ;

}

/1 3. Query the data from enpl oyees

System out . println("Queryi ng enpl oyees");

Systemout. format ("%’s | % 30s | % 30s%", "enp_no", "first_nane", "last_nane");
Systemout.println("-------- e R T R ")
ps = connecti on. prepareSt at ement ("sel ect enp_no, first_nane, |ast_nane from enpl oyees where eng
for (int i =0; i < 4; ++i) {

/1l we need to specify the shard key before accessing the data
connecti on. set ShardKey(ids[i].toString());

83

How Connector/J Chooses a MySQL Server

ps.setint(1, ids[i]);
Resul t Set rs = ps. executeQuery();
rs.next();

Systemout. format ("%d | % 30s | % 30s%", rs.getInt(1), rs.getString(2), rs.getString(3));

rs.close();
ps. cl ose();
/1 4. Connect to the global group and clean up
connecti on. set Server G oupNane("fabric_test1l gl obal");
st at ement . execut eUpdat e("drop table if exists enpl oyees");

stat ement . cl ose();
connection. cl ose();

9.8 How Connector/J Chooses a MySQL Server

Before a database server can be chosen, a server group must be chosen. The following values are
taken into account:

* server group name: If a server group name is specified directly, it is used.

 query tables: If the query table set contains a sharded table, the shard mapping for that table is used.

The server group name can be accessed by con. get Current Server G oup() . get Nane().

Once a server group is chosen, an individual database server is chosen based on the read-only state
of the connection. A read-only server is chosen if one is available. Otherwise a read-write server is
chosen. The server weight is not currently taken into account.

None of these values can be changed while a transaction is in progress.

9.9 Using Hibernate with MySQL Fabric

It is possible to use Hibernate 4's multi-tenancy support to work with a set of database servers
managed by MySQL Fabric.

APIs necessary to implement MultiTenantConnectionProvider

We can use internal APIs included with Connector/J with MySQL Fabric support to implement
Hibernate's MultiTenantConnectionProvider.

The following implementation is included in the package as the
com nysql . fabric. hi bernate. Fabri cMul ti Tenant Connecti onProvi der class. An example
of how to use it is included as the class deno. f abri c. Hi ber nat eFabri c.

To implement Mul t i Tenant Connect i onProvi der, we use the
com nysql . fabric. Fabri cConnecti on class. This class connects to the MySQL Fabric manager
to obtain information about servers and data sharding. This is an internal APl and subject to change.
The following Fabr i cConnect i on methods can be used:

e FabricConnection(String url, String username, String password) throws
Fabri cCommuni cat i onExcepti on

Construct a new instance of a MySQL Fabric client and initiate the connection.

84

http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/service/jdbc/connections/spi/MultiTenantConnectionProvider.html

Implementing MultiTenantConnectionProvider

e ServerGoup getServerGoup(String server GoupNane) throws
Fabri cConmuni cati onExcepti on

Retrieve an object representing the named server group. This includes the list of servers in the group
including their mode (read-only or read-write).

» Shar dMappi ng get Shar dMappi ng(Stri ng dat abase, String table) throws
Fabri cCommuni cat i onExcepti on

Retrieve an object represending a shard mapping for the given database and table. The
Shar dMappi ng indicates the global group and the individual shards.

The following additional methods are used:

e Set <Server> Server G oup. get Servers()
Return the servers in this group.

e« String Server. get Host name()
Return the server host name.

e int Server.getPort()

Return the server port.

Implementing MultiTenantConnectionProvider

To begin, we declare the class with members to keep necessary information for the connection and the
constructor:

public class FabricMilti Tenant Connecti onProvi der inplenents Ml ti Tenant Connecti onProvi der {
/'l a connection to the MySQL Fabric manager
private FabricConnecti on fabricConnecti on;
/1 the database and table of the sharded data
private String database;
private String table;
/'l user and password for Fabric nanager and MySQ. servers
private String user;
private String password;
/1 shard mapping for " database.table’
privat e ShardMappi ng shar dMappi ng;
/1 gl obal group for the shard mappi ng
private Server G oup gl obal G oup;

publ i ¢ FabricMil ti Tenant Connecti onProvi der (
String fabricUrl, String database, String table,
String user, String password) {
try {
thi s. fabri cConnecti on = new Fabri cConnection(fabricUrl, user, password);
t hi s. dat abase = dat abase;
this.table = table;
t his.user = user;
thi s. password = password;
Il eagerly retrieve the shard mappi ng and server group fromthe Fabric nanager
t hi s. shardMappi ng = this. fabri cConnecti on. get Shar dMappi ng(t hi s. dat abase, this.table);
this. gl obal Goup = this.fabricConnection.
get Server Group(t hi s. shar dMappi ng. get A obal G- oupNane()) ;
} catch(Fabri cCommuni cati onException ex) {
t hrow new Runti neExcepti on(ex);
}
}

Next, create a method to create connections:

/**

85

Implementing MultiTenantConnectionProvider

Find a server with node READ WRITE in the given server group and create a JDBC connection to it.

*
*
* @eturns a {@ink Connection} to an arbitrary MySQL server
* @hrows SQLException if connection fails or a READ WRI TE server is not contained in the group
*/
private Connecti on get ReadWiteConnecti onFronServer G oup(Server G oup server G oup)
throws SQLException {
/] iterate the list of servers in the given group until we find a r/w server
for (Server s : serverGoup.getServers()) {
if (Server Mbde. READ WRI TE. equal s(s. get Mbde())) {
/] create a connection to the server using vanilla JDBC
String jdbcUrl = String.format("jdbc:nysql://%: %/ %",
s. get Host name(), s.getPort(), this.database);
return Driver Manager. get Connection(jdbcUrl, this.user, this.password);
}
}
/1 throw an exception if we are unable to nmake the connection
t hr ow new SQLExcepti on(
"Unable to find r/w server for chosen shard mapping in group " + server G oup. get Nane());

}
To implement the interface, the following methods must be implemented:
» Connection get AnyConnection() throws SQ.Exception

This method should obtain a connection to the global group. We can implement it like this:

/**
* Get a connection that be used to access data or nmetadata not specific to any shard/tenant.
* The returned connection is a READ WRI TE connection to the global group of the shard mappi ng
* for the database and table association with this connection provider.
*/
publ i ¢ Connection get AnyConnection() throws SQ.Exception {
return get ReadWit eConnecti onFronSer ver G oup(t hi s. gl obal G oup) ;
}

e Connection get Connection(String tenantldentifier) throws SQLException

This method must use the t enant | denti fi er to determine which server to access. We can look
up the Ser ver G oup from the Shar dMappi ng like this:

/**
* Get a connection to access data association with the provided “tenantldentifier' (or shard
* key in Fabric-speak). The returned connection is a READ WRI TE connecti on.
*/
publ i ¢ Connection getConnection(String tenantldentifier) throws SQ.Exception {
String server GroupName = this.shardMvappi ng. get G- oupNanmeFor Key(tenant|dentifier);
try {
Server Group serverGroup = this.fabricConnection. get Server G oup(server G oupNane) ;
return get ReadWit eConnecti onFr onfSer ver G oup(server G oup) ;
} cat ch(Fabri cConmuni cati onException ex) {
t hrow new Runti meExcepti on(ex);
}
}

Finally, our trivial implementation to release connections:

/**
* Rel ease a non-shard-specific connection.
*/
public void rel easeAnyConnecti on(Connecti on connection) throws SQ.Exception {
connecti on. cl ose();

}

/**
* Rel ease a connection specific to “tenantldentifier'.
*/
public void rel easeConnection(String tenantldentifier, Connection connection)

86

Using a custom MultiTenantConnectionProvider

throws SQLException {
rel easeAnyConnecti on(connecti on);

}
| **

* W& don't track connections.
* @eturns fal se
&
publ i ¢ bool ean supportsAggressi veRel ease() {
return fal se;
}

And finally to implement the W apped role:

publ i ¢ bool ean i sUnwr appabl eAs(d ass unw apType) {
return fal se;
}

public <T> T unw ap(C ass<T> unwr apType) {
return null;
}

Using a custom MultiTenantConnectionProvider

The Sessi onFact ory can be created like this:

/] create a new instance of our custom connection provider supporting M/SQL Fabric
Fabri cMul ti Tenant Connecti onProvi der connProvi der =
new Fabri cMil ti Tenant Connecti onPr ovi der (
fabricUl, "enployees", "enployees", usernanme, password);
/] create a service registry with the connection provider to construct the session factory
Servi ceRegi stryBui |l der srb = new Servi ceRegi st ryBuil der();
srb. addSer vi ce(
org. hi bernate. servi ce.j dbc. connecti ons. spi . Mul ti Tenant Connecti onProvi der. cl ass,
connProvi der) ;
srb. appl ySetting("hi bernate. dial ect", "org.hibernate.dial ect. My\SQLI nnoDBDi al ect");

/] create the configuration and build the session factory
Configuration config = new Configuration();
confi g. set Property("hi bernate. nmul ti Tenancy", "DATABASE");

confi g. addResour ce("conm nysql /fabri c/ deno/ enpl oyee. hbm xm ") ;
return config. buil dSessi onFactory(srb. buil dServi ceRegistry());

Using Hibernate multi-tenancy

Once you have created a Sessi onFact or y with your custom Mul t i Tenant Connect i onProvi der,
it is simple to use. Provide the shard key to the Sessi onFact or y when creating the session:

/| access data related to shard key = 40
Sessi on session = sessionFactory.w thOptions().tenantldentifier("40").openSession();

Each Sessi on is given a shard key (tenant identifier in Hibernate-speak) and uses it to obtain a

connection to an appropriate server. This cannot be changed for the duration of the Sessi on.

9.10 Connector/J Fabric Support Reference

9.10.1 Connection Properties
The following connection properties are recognized by Connector/J for dealing with MySQL Fabric:
« fabri cShar dKey

The initial shard key used to determine which server group to send queries to. The
fabri cShar dTabl e property must also be specified.

87

FabricMySQLConnection API

fabri cShardTabl e
The initial shard mapping used to determine a server group to send queries to.
« fabricServer Goup
The initial server group to direct queries to.
» fabricProtocol

Protocol used to communicate with the Fabric node. XML-RPC over HTTP is currently the only
supported protocol and is specified with a value of "http".

e fabricUsernane

Username used to authenticate with the Fabric node.
» fabricPassword

Password used to authenticate with the Fabric node.
» fabricReportErrors (default=false)

Determines whether or not errors are reported to Fabric's distributed failure detector. Only
connection errors, those with an SQL state beginning with "08", are reported.

9.10.2 FabricMySQLConnection API

The following methods are available in the com nysql . fabric.] dbc. Fabri cMySQ.Connecti on
interface.

» void clearServerSel ectionCriteria()
Clear all the state that is used to determine which server to send queries to.
* voi d set ShardKey(String shardKey) throws SQ.Exception
Set the shard key for the data being accessed.
e String get ShardKey()
Get the shard key for the data being accessed.
» void setShardTabl e(String shardTabl e) throws SQLException

Set the table being accessed. Can be a table name or a database and table name pair in the form
db_nane. t bl _nane. The table must be known by Fabric as a sharded table.

e String get ShardTabl e()
Get the name of the table being accessed.
» void setServer GoupNane(String server GoupNane) throws SQLException

Set the server group name to connect to. Direct server group selection is mutually exclusive of
sharded data access.

e String get Server G oupName()
Get the server group name when using direct server group selection.
e Server G oup get Current Server G oup()

Get the current server group if sufficient server group selection has been provided. Otherwise null.

88

FabricMySQLConnection API

« void clearQeryTabl es() throws SQ.Exception

Clear the list of tables for the last query. This also clears the shard mapping/table and must be given
again for the next query via set Shar dTabl e() oraddQueryTabl e().

* void addQueryTabl e(String tabl eNane) throws SQ.Exception
Specify that the given table is intended to be used in the next query.
e Set<String> get QueryTabl es()

Get the list of tables intended to be used in the next query.

89

90

Chapter 10 Using Connector/Net with MySQL Fabric

Table of Contents

10.1 SyStEM REQUITEIMENTS .. .iitiieiiiii ettt ettt et e et e et et e e et et e e e e et e e e eetanaeeenns
10.2 Set up the MySQL FabriC PIUGINooiiiieii e e
10.3 USIiNg MYSQL FaDIIC GIOUPSuuiiiiiiiieieiiiii ettt e ettt et e e e e et et e e e eai e eeaans
10.4 Using RaNged SNArdingcooeuuiiiiiiiieiiie ettt e

Connector/Net supports MySQL Fabric as a Replication/Load balancing plugin.

Note

@ This feature was added in MySQL Connector/Net 6.9.4.
Support for this feature was removed in MySQL Connector/Net 6.10.2 with the
introduction of InnoDB cluster, which combines various MySQL technologies to

enable you to create highly available clusters of MySQL instances.

The following steps are required to use MySQL Fabric with Connector/Net:

10.1 System Requirements

Confirm that you have the required Connector/Net and Fabric versions installed:
» Connector/Net 6.9.4 or newer

* MySQL Fabric 1.5.0 or newer

10.2 Set up the MySQL Fabric Plugin

First, add MySql.Data and MySql.Fabric.Plugin to the project references:

91

Set up the MySQL Fabric Plugin

Figure 10.1 MySQL Fabric Project References

Solution Explorer v B X
Q o-eap &=
Search Solution Explorer (Ctrl+7) P~

fa] Solution 'MySqlFabricTestConsole' (1 project)
- MySqlFabricTestConsole
b M Properties
4 D{] References
-8 Microsoft.CSharp
-8 MySql.Data
-8 MySql.Fabric.Plugin
-0 System
o8 System.Core
»-B System.Data
»-B System.Data.DataSetExtensions
-8 System.Xml
-8 System.Xml.Ling
P Program.cs

Second, add a configuration section with the Fabric connection to the App. conf i g configuration file.
For example:

<confi guration>
<confi gSecti ons>
<section name="M/SQ." type="M/Sql.Data. M/Sql Cient.M/Sql Configurati on, MySql . Data,
Ver si on=6.9.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d"/>
</ confi gSecti ons>
<MysQL>
<Repl i cati on>
<Server G oups>
<G oup nane="Fabric" groupType="M/Sql . Fabri c. Fabri cServer Group, MySql . Fabri c. Pl ugi n">
<Servers>
<Server nane="fabric" connectionstring="server=l ocal host; port=32275; ui d=adm n; passwor d=admi npass; "/:
</ Server s>
</ G oup>
</ Server G oups>
</ Repl i cati on>
</ MySQ.>

</ confi guration>

Notice that the Fabric connection is set in the Server node:

<Server nane="fabric" connectionstring="server=l ocal host; port=32275; ui d=adm n; passwor d=adm npass; "/ >

Connector/Net only supports the MySQL protocol for connecting to MySQL Fabric, so the correct port
must be used.

92

Using MySQL Fabric Groups

10.3 Using MySQL Fabric Groups

The MySQL Fabric group is used with a MySqglConnection that contains the server name specified
in the App. conf i g file, and a username and password for connecting to the servers defined in the

group.

A Fabric extension method is used to specify the group and mode:

MySgl Connecti on conn = new MySqgl Connecti on(connecti onStri ng);

conn. Set Fabri cProperties(groupld: "ny_group", node: FabricServer ModeEnum Read Wite);

The following example shows how to store and retrieve information in a specific Fabric group:

Note
@ The initial MySQL Fabric configuration for this example is defined in the MySQL
Fabric documentation at Section 3.1, “Example: Fabric and Replication”.

usi ng System

using MySql . Data. MySgl d i ent ;
usi ng MySqgl . Fabri c;

namespace Fabri cTest

{

cl ass Program

{

public const string connectionString = "server=fabric; ui d=appuser; passwor d=pass; ";
static void Main(string[] args)

RunFabri cTest ();
}

static string AddEnpl oyee(MySgl Connecti on conn, int enp_no, string first_name, string |ast_nane)

{
conn. Set Fabri cProperties(groupld: "ny_group", node: FabricServer ModeEnum Read_Wite);

My Sgl Conmand cnd = new MySgl Command(" USE enpl oyees”, conn);
cnd. Execut eNonQuery();

cmd. CommandText = "1 NSERT | NTO enpl oyees VALUES (@np_no, @irst_nane, @ ast_nane)";
cnd. Par anet er s. Add(" enp_no", enp_no);

cnd. Par aneters. Add("first_nane", first_nane);

cnd. Par anet ers. Add("| ast _nanme", |ast_nane);

cnd. Execut eNonQuery();

cmd. CommandText = " SELECT @@l obal . gti d_execut ed";
cnd. Paraneters. C ear();
usi ng (MySql Dat aReader reader = cnd. Execut eReader ())

whi l e (reader. Read())

{

Consol e. WitelLine("Transacti ons executed on the master " + reader. GetVal ue(0));
}
return reader. GetString(0);

}
}

static void Fi ndEnpl oyee(MySql Connecti on conn, int enp_no, string gtid_executed)

{
conn. Set Fabri cProperti es(groupld: "ny_group", node: FabricServer ModeEnum Read_onl y);

MySgl Conmand cnd = new MySgl Command("", conn);

cnd. CommandText = " SELECT WAI T_UNTI L_SQ._THREAD AFTER_GTI DS(@t i d_executed, 0)";
cnd. Par anet ers. Add("gti d_executed", gtid_executed);

usi ng (MySql Dat aReader reader = cnd. Execut eReader ())

93

Using Ranged Sharding

{
whil e (reader. Read())

{
Consol e. WiteLine("Had to synchroni ze " + reader. CGetValue(0) + " transactions.");
}
}

cmd. CommandText = "USE enpl oyees";
cnd. Paraneters. C ear();
cnd. Execut eNonQuery();

cnd. CommandText = "SELECT first_nane, |ast_name FROM enpl oyees ";
cmd. CommandText += " WHERE enp_no = @np_no";

cnd. Paraneters. C ear();

cnd. Par anet er s. Add(" enp_no", enp_no);

usi ng (MySql Dat aReader reader = cnd. Execut eReader ())

whil e (reader. Read())
{

obj ect[] values = new object[reader. Fi el dCount];
reader . Get Val ues(val ues) ;

Consol e. WiteLine("Retrieved {0}", string.Join(",", values));
}
}
}
static void RunFabricTest ()
{

usi ng (MySqgl Connecti on conn = new MySgl Connecti on(connectionString))

string gtid_executed;
conn. Set Fabri cProperties(groupld: "ny_group", node: FabricServer ModeEnum Read_Wite);
conn. Qpen();

MySgl Conmand cnd = new MySgl Cormand("", conn);
cnd. CommandText = " CREATE DATABASE | F NOT EXI STS enpl oyees;";
cnd. Execut eNonQuery();

cnd. CommandText = "USE enpl oyees;";

cnd. Execut eNonQuery();

cnd. CommandText = "DROP TABLE | F EXI STS enpl oyees; ";
cnd. Execut eNonQuery();

cmd. CommandText = " CREATE TABLE enpl oyees(";

cmd. CommandText += " enp_no I NT, ";

cmd. CommandText += " first_name CHAR(40), “;

cmd. CommandText += " | ast _name CHAR(40)";

cnd. CommandText += ");";
cnd. Execut eNonQuery() ;

gtid_executed = AddEnpl oyee(conn, 12, "John", "Doe");
Fi ndEnpl oyee(conn, 12, gtid_executed);

10.4 Using Ranged Sharding

Sharding with Connector/Net requires you to specify the table, key, and scope for each executed
query.

MySgl Connecti on con = new MySgl Connecti on(connectionString);

con. Set Fabri cProperties(tabl e: "enpl oyees. enpl oyees", key: enpld. ToString(),
nmode: Fabri cServer ModeEnum Read_Wite, scope: FabricScopeEnum Local);

MySgl Command cnd = new MySql Comrand(
string. Format ("insert into enpl oyees(enp_no, first_nane, |ast_nanme) values ({0}, '{1}', '{2}'

94

Using Ranged Sharding

enpld, firstNanme, |astNanme), con);
cnd. Execut eScal ar () ;

You can use the following MySQL Fabric configuration to execute the code example:

Note
E For related MySQL Fabric documentation, see Section 3.2.2, “Sharding
Scenario”.

usi ng System
usi ng System Col | ecti ons. Generi c;

using MySql . Data. MySgl d i ent ;
usi ng MySql . Fabri c;

namespace Fabri cTest

{

cl ass ShardTest

{

public const string connectionString = "server=fabri c; ui d=appuser; passwor d=pass; "

public static void test_shard_range()

{
usi ng (MySql Connecti on con = new MySql Connecti on(connecti onString))

con. Set Fabri cProperties(groupld: "group_id-global", node: FabricServer ModeEnum Read_Wit e,
scope: Fabri cScopeEnum d obal) ;

con. Open();

MySgl Conmand cnd = new MySqgl Command("creat e database if not exists enpl oyees", con);
cnd. Execut eScal ar () ;

cmd. CommandText = "use enpl oyees";
cnd. Execut eScal ar () ;

cnd. CommandText = "drop table if exists enpl oyees";
cnd. Execut eScal ar () ;

crmd. CommandText =
@create tabl e enpl oyees (
enp_no int,
first_name char(40),
| ast _nanme char(40)

cnd. Execut eScal ar () ;
string gtid = prepare_synchroni zati on(con);

string[] first_names = { "John", "Buffal 0", "Mchael", "Kate", "Deep", "GCenesis" };
string[] last_nanes = { "Doe", "Bill", "Jackson", "Bush", "Purple" };
List<int> list_enp_no = new List<int>();

con. Set Fabri cProperti es(scope: FabricScopeEnum Local);

for (int i =0; i < 10; i++)
{
int enpld = pick_shard_key();
I'i st_enp_no. Add(enpl d) ;
add_enpl oyee(con, enpld, first_names[enpld % first_nanes. Length], |ast_nanes[enpld %] ast_nan

}
for (int i =0; i < list_enp_no.Count; i++)
{
int enpld = list_enp_no[i];
find_enpl oyee(con, enpld, gtid);
}

}
}

95

Using Ranged Sharding

public static int pick_shard_key()
{
Random r = new Randon();
int shard = r.Next (0, 2);
int shard_range = shard * 10000;
shard_range = (shard != 0) ? shard_range : shard_range + 1;
int shift_within_shard = r.Next (0, 99999);
return shard_range + shift_w thin_shard;

}

public static void add_enpl oyee(M/Sql Connection con, int enpld, string firstName, string |astNane, stri
{
con. Set Fabri cProperties(table: "enpl oyees. enpl oyees", key: enpld. ToString(), node: FabricServerMdel
synchroni ze(con, gtid);
MySgl Conmand cnd = new MySql Comrand(
string. Format ("insert into enpl oyees(enp_no, first_nane, |ast_name) values ({0}, '{1}', '{2}')®
enpld, firstNanme, |astNanme), con);
cnd. Execut eScal ar () ;
}

public static void find_enpl oyee(M/Sqgl Connection con, int enpld, string gtid)
{
con. Set Fabri cProperties(tabl e: "enpl oyees. enpl oyees", key: enpld. ToString(),
nmode: Fabri cServer ModeEnum Read_onl y) ;
synchroni ze(con, gtid);
MySgl Conmand cnd = new MySql Command(stri ng. For mat ("
sel ect first_nane, |ast_name from enpl oyees where enp_no = {0}", enpld), con);
usi ng (MySql Dat aReader r = cnd. Execut eReader ())

while (r.Read())

{
Console. WiteLine("({0}, {1})", r.GetString(0), r.GetString(1));
}
}
}
public static string prepare_synchronizati on(M/Sgl Connecti on con)
{

string gtid_executed = "";

MySgl Conmand cnd = new MySgl Command(" sel ect @@l obal . gti d_executed", con);
gtid_executed = (string)cnd. Execut eScal ar () ;

return gtid_execut ed;

}

public static void synchroni ze(MySgl Connection con, string gtid_executed)

{
My/Sgl Command cnd = new MySql Conmand(string. Format ("SELECT WAI T_UNTI L_SQ._THREAD AFTER GTI DS(' {0},

gti d_executed), con);

cnd. Execut eScal ar () ;

}

}
}

96

Chapter 11 MySQL Workbench and MySQL Fabric Integration

Browse, view status, and connect to any MySQL instance in a Fabric Cluster.

Note
@ MySQL Workbench 6.3.9 no longer supports this feature.

Feature Support:

» MySQL Workbench 6.3.0 - 6.3.8: Support for this feature requires Connector/Python and MySQL
Fabric 1.5, including the Python module. Fabric 1.5 support was added in MySQL Workbench 6.3,
and due to incompatible protocol changes, Fabric 1.4 support was dropped.

* MySQL Workbench 6.2.0 - 6.2.5: Support for this feature requires MySQL Fabric 1.4.

To set up a managed Fabric connection, create a new MySQL connection with the new MySQL Fabric
Management Node connection method. The connection tiles have a different look:

Figure 11.1 Fabric Connection Group Tile

#

File Edit View Database Tools Scrpting Help

MySQL Connections ® ® a Shortcuts

-,
S MySQL Utilities

Local instance Fabric
>_
oot 1 sdmin
localhos 3308 T fateiceampie3iZTe

Database Migration

ySOL Bug Reporter

Warkbench Blogs

Models ® @ ®

Warkbench Forum

Clicking the new fabric group tile shows the managed connections:

97

Figure 11.2 Fabric Connection Group Tiles

& MySQL Workbench
&
File Edit View COotabase Tools Scriping Help

f Man

Fabric Server: Fabric Utilities

Managed [nsmanees 3
of HA Geoups 1

fabricexample:20685 fabricexample:20686

1 tabrc U SECONDRRY', 1 fabric
17 fabeie exarnpc8Es " READLOMLY

fabricexample:20687

1 fabric

ch Forum

98

Chapter 12 MySQL Fabric Frequently Asked Questions

FAQ Categories

* General Questions

High-Availability Questions

Sharding Questions

» Consistency Questions

General

12.1 What is MYSQL FaBIIC? ..iieiiiiiiiiie et e e e e e e e e et e e et e e e e e e an e e aneeanns 99
12.2 Is it necessary to use a MySQL Fabric-specific Storage ENgine?cccovvvviiieviiieviinieeieeennnn, 99
12.3 What versions of MySQL are supported by MySQL FabriC?ccooeeiiiiiiiiiiiieii e 99
12.4 What connectors support MySQL FabriC?cooiiiiiiii e 99
12.5 Are tranSACHONS ACID? ...ttt et 99
12.6 How many machines are needed in order to use MySQL Fabric?ccoooviiviiiviiiinivn e, 99
12.7 Do | need to run an agent for each MySQL SEIVEI?ooveuiiiiiiiiiiieiie e e e 100
12.8 What interface is available to manage MySQL Fabric and its server farm?cccceeevvnne. 100
12.9 How does MySQL Fabric Compare with MySQL CIUSEI?cccvivviiiiieiiiii e, 100
12.10 How is MySQL Fabric lICENSEA?uiiiiiiii e e e e e 100
12.11 What if MySQL Fabric doesn't do what | need it t0?cocvviiviiiiiii e 100

12.1. What is MySQL Fabric?

MySQL Fabric is a framework for managing groups of MySQL Servers and using those servers
to provide services. It is designed to be extensible so that over time many different services
can be added. In the current version the services provided are High Availability (built on top of
MySQL Replication) and scale-out (by sharding the data).

MySQL Fabric is implemented as a MySQL Fabric node/process (which performs management
functions) and Fabric-aware connectors that are able to route queries and transactions directly
to the most appropriate MySQL Server. The MySQL Fabric node stores state and routing
information in its State Store (which is a MySQL database).

12.2. Isit necessary to use a MySQL Fabric-specific Storage Engine?

No. The MySQL Servers that are being managed by MySQL Fabric continue to use InnoDB
(and in the future NDB/MySQL Cluster may also be supported).

12.3. What versions of MySQL are supported by MySQL Fabric?

Currently MySQL 5.6. New MySQL releases will be fully supported as they reach General
Availability status.

12.4. What connectors support MySQL Fabric?

Java, PHP, Python, and .NET. In addition the Hibernate and Doctrine Object-Relational
Mappings frameworks are also supported. Connector/C 6.2 also adds fabric support as a labs
release.

12.5. Are transactions ACID?

Yes. Because each transaction is local to a single MySQL Server, all of the ACID behavior of
the InnoDB storage engine is experienced.

12.6. How many machines are needed in order to use MySQL Fabric?

99

12.7.

12.8.

12.9.

12.10.

12.11.

For development, the MySQL Fabric node and all of the managed MySQL Servers can be
hosted on a single machine.

For deployment, the minimal HA configuration would need 3 or more machines:

e 2to host MySQL Servers

* 1 to host the MySQL Fabric process (that machine could also be running application code).
Do | need to run an agent for each MySQL Server?

No. The MySQL Fabric node is the only additional process and does not need to be co-located
with any of the MySQL Servers that are being managed.

What interface is available to manage MySQL Fabric and its server farm?

A Command Line Interface (CLI) is provided as well as an XML/RPC API that can be used by
connectors and/or applications to make management changes or retrieve the routing information
- in this way, an application could use MySQL Fabric without a Fabric-aware connector.

How does MySQL Fabric Compare with MySQL Cluster?

MySQL Cluster is a mature, well proven solution for providing very high levels of availability and
scaling out of both reads and writes. Some of the main extra capabilities that MySQL Cluster
has over MySQL Fabric are:

» Synchronous replication

» Faster (automated) fail-over (resulting in higher availability)
» Transparent sharding

» Cross-shard joins and Foreign Keys

* In-memory, real-time performance

MySQL Fabric on the other hand, allows the application to stick with the InnoDB storage engine
which is better suited to many applications.

How is MySQL Fabric licensed?

MySQL Fabric is available for use under the GPL v2 Open Source license or it can be
commercially licensed as part of MySQL Enterprise Edition or MySQL Cluster Carrier Grade
Edition.

What if MySQL Fabric doesn't do what | need it to?
There are a number of options:
» Raise feature requests or bug reports

» Modify the code to customize the current services. MySQL Fabric is written in Python and is
designed to be easy to extend.

« Implement new modules that bind into the MySQL Fabric framework to implement new
services.

High-Availability

12.1 How is High Availability achieved with MySQL FabriC?cccooiiiiiiiiiiiiii e 101
12.2 How are MySQL Server failures detected?coouuiiiiiiiiiiii e 101
12.3 What happens when the primary (master) MySQL Server failS?ccooooiiiiiiiiiiiiies 101
12.4 Does my application need to do anything as part of the failover?cccoooiiiiiiiiines 101

100

http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

12.5 Is a recovered MySQL Server automatically put back into service?ccoovvviiiiiiiieineeenn, 101

12.6 Does MySQL Fabric work with semisynchronous replication?cccooveiiiiii i, 101
12.7 Do | have to use MySQL Replication for implementing HA?cooiiiiiiiiiiii e 101
12.8 Is the MySQL Fabric node itself fault tolerant? What happens when the MySQL Fabric node

IS NOL AVAIIADIET? ... e e e aee 102

12.1. How is High Availability achieved with MySQL Fabric?

MySQL Fabric manages one or more HA-Groups where each HA-Group contains one or
more MySQL Servers. For High Availability, a HA Group contains a Primary and one or more
Secondary MySQL Servers. The Primary is currently a MySQL Replication master which
replicates to each of the secondaries (MySQL Replication slaves) within the group.

By default, the Fabric-aware connectors route writes to the Primary and load balance reads
across the available secondaries.

Should the Primary fail, MySQL Fabric will promote one of the Secondaries to be the new
Primary (automatically promoting the MySQL Server to be the replication Master and updating
the routing performed by the Fabric-aware connectors).

12.2. How are MySQL Server failures detected?

The MySQL Fabric node has a built-in monitoring function that checks on the status of the
master. In addition, the Fabric-aware connectors report to MySQL Fabric when the Primary
becomes unavailable to them. The administrator can configure how many problems need to be
reported (and over what time period) before the failover is initiated.

12.3. What happens when the primary (master) MySQL Server fails?

The MySQL Fabric node will orchestrate the promotion of one of the Secondaries to be the new
Primary. This involves two main actions:

» Promoting the Secondary to be the replication master (and any other surviving Secondaries
will become slaves to the new master)

» Updating the routing information such that Fabric-aware connectors will no longer send any
queries or transactions to the failed Primary and instead send all writes to the new Primary.

12.4. Does my application need to do anything as part of the failover?

No. The failover is transparent to the application as the Fabric-aware connectors will
automatically start routing transactions and queries based on the new server topology. The
application does need to handle the failure of a number of transactions when the Primary
has failed but before the new Primary is in place but this should be considered part of normal
MySQL error handling.

12.5. Is arecovered MySQL Server automatically put back into service?

No, the user must explicitly invoke MySQL Fabric to return a recovered MySQL Server to a HA
Group. This is intentional so that the user can ensure that the server really is ready to take on an
active role again.

12.6. Does MySQL Fabric work with semisynchronous replication?

In this version, MySQL Fabric sets up the HA Group to use asynchronous replication. If the
user prefers to use semisynchronous replication then they can activate it manually after MySQL
Fabric has created the replication relationships.

12.7. Do | have to use MySQL Replication for implementing HA?

At present, HA Groups are formed using MySQL Replication; future releases may offer further
options such as MySQL Cluster or DRBD.

101

12.8. Is the MySQL Fabric node itself fault tolerant? What happens when the MySQL Fabric node is
not available?

There is currently only a single instance of the MySQL Fabric node. If that process should fail
then it can be restarted on that or another machine and the state and routing information read
from the existing state store (a MySQL database) or a replicated copy of the state store.

While the MySQL Fabric node is unavailable, Fabric-aware connectors continue to route queries
and transactions to the correct MySQL Servers based on their cached copies of the routing data.
However, should a Primary fail, automated failover will not happen until the MySQL Fabric node

is returned to service and so it's important to recover the process as quickly as possible.

Sharding
12.1 How is scaling achieved with MySQL FabriC?cccouuiiiiiiiiiii e 102
12.2 Does scaling apply to both reads and WIHEES?iiiiiiiiiiiii e 102
12.3 What if | have table data that needs to be in every shard?cccoooviiiiiiiiiii 102
12.4 How many MySQL Servers can | SCale t0?ooiiiuiiiiiiiiiii e 103
12.5 Can MySQL Fabric introduce contention or deadloCK?ccooovviiiiiiiiiiiniiiiie e, 103
12.6 What happens when my data set or usage grows and a shard grows too big?c.......... 103
12.7 Is there extra latency when using MySQL FabriC?ccooiiiiiiiiiiiiiiii e 103
12.8 Why does MySQL Fabric route using connector logic rather than via a proxy?ccceee.... 103
12.9 What is the difference between a shard key and a shard identifier?ccccoooviiiiinnieiinnnnn. 103
12.10 Does my application need to change when a shard is moved to a different MySQL Server

or SPIit iNt0 MUILIPIE SNAITUS?uiiiii e e 103
12.11 Is it possible to perform cross-shard UnioNS OF JOINS?covuuiiiiiiiiiiie e 103
12.12 Is the routing of queries and transactions transparent to my application?ccc.uuneee. 104

12.1. How is scaling achieved with MySQL Fabric?

Horizontal scaling is achieved by partitioning (sharding) the data from a table across multiple
MySQL Servers or HA Groups. In that way, each server or group will contain a subset of the
rows from a specific table.

The user specifies what column from the table(s) should be used as the shard key as well as
indicating whether to use a HASH or RANGE partitioning scheme for that key; if using RANGE
based sharding then the user should also specify which ranges map to which shards. Currently
the sharding key must be numeric.

When accessing the database, the application specifies the sharding key which the Fabric-
aware connector will then map to a shard ID (using the mapping data it has retrieved and
cached from MySQL Fabric) and route the query or transaction to the correct MySQL Server
instance.

Within a HA group, the Fabric-aware connector is able to direct writes to the Primary and then
spread the read queries across all available Secondaries (and optionally the Primary).

12.2. Does scaling apply to both reads and writes?

Yes. Both reads and writes scale linearly as more HA groups are added. Reads can also be
scaled independently by adding more Secondary servers to a HA Group.

12.3. What if | have table data that needs to be in every shard?

A special group can be created called the Global Group which holds the Global Tables. Any
table whose data should appear in its entirety in all HA Groups should be handled as a Global
Table. For a Global Table, all writes are sent to the Global Group and then replicated to all of
the HA Groups. An example might be the department table from an employee database - the
contents of the department table being small enough to be stored in every server and where that
data could be referenced by any record from one of the sharded employee tables.

102

12.4.

12.5.

12.6.

12.7.

12.8.

12.9.

12.10.

12.11.

Similarly, any schema changes would be sent to the Global Group where they can be replicated
to all of the HA Groups.

How many MySQL Servers can | scale to?

There is no limit—either to the number of HA Groups or the number of servers within a HA
group.

Can MySQL Fabric introduce contention or deadlock?

No. A single transaction can only access data from a single shard (+ Global Table data) and all
writes are sent to the Primary server within that shard's HA Group. In other words, all writes to a
specific row will be handled by the same MySQL Server and so InnoDB's row-based locking will
work as normal.

What happens when my data set or usage grows and a shard grows too big?
MySQL Fabric provides the ability to either:
* Move a shard to a new HA group containing larger or more powerful servers

» Split an existing shard into two shards where the new shard will be stored in a new HA Group.
In the future, different levels of granularity may be supported for shard splitting.

Is there extra latency when using MySQL Fabric?

No. Because the routing is handled within the connector there is no need for any extra "hops" to
route the request via a proxy process.

Why does MySQL Fabric route using connector logic rather than via a proxy?

One reason is to reduce complexity; rather than having a pool of proxy processes (a single
proxy would represent a single point of failure) the logic is just part of each connector instance.
The second reason is to avoid the latency involved in all operations being diverted via a proxy
process (which is likely to be an a different machine).

What is the difference between a shard key and a shard identifier?

The shard key is simply the value of a column from one or more tables. The shard key does not
change if a row is migrated from one shard or server to another. The shard key is mapped to a

shard id (using either a HASH or RANGE based mapping scheme); the shard id represents the
shard itself.

As an example, if an existing shard were split in two then some of the rows would map to one
shard's shard id and the rest to the other's; any given row's shard key would *not* change as
part of that split.

Very importantly, shard keys are known to the application while shard ids are not and so any
changes to the topology of the collection of servers is completely transparent to the application.

Does my application need to change when a shard is moved to a different MySQL Server or split
into multiple shards?

No. Because the application deals in shard keys and shard keys do not change during shard
moves or splits.

Is it possible to perform cross-shard unions or joins?

Not at present; all queries are limited to the data within a single shard + the Global Table data. If
data from multiple shards is required then it is currently the application's responsibility to collect
and aggregate the data.

103

12.12. Is the routing of queries and transactions transparent to my application?
Partially.

For HA, the application simply needs to specify whether the operations are read-only or involve
writes (or consistent reads).

For sharding, the application must specify the sharding key (a column from one or more tables)
pbut this is independent of the topology of the MySQL Servers and where the data is held and it
is unaffected when data is moved from one server to another.

Consistency
12.1 What do | do if | need immediately-consistent readsS?coovieiiiiiiiiiiinii e 104
12.1. What do | do if | need immediately-consistent reads?

Because replication from the Primary (master) to the Secondaries (slaves) is not synchronous,
you cannot guarantee that you will retrieve the most current data when reading from a
secondary. To force a read to be sent to the Primary, the application may set the *mode*
property for the connection to read/write rather than read.

104

	MySQL Fabric 1.5
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to Fabric
	1.1 Fabric Prerequisites
	1.2 Fabric Concepts

	Chapter 2 Installing and Configuring MySQL Fabric
	2.1 Downloading MySQL Fabric
	2.2 Installing MySQL Fabric
	2.3 Configuring MySQL Fabric
	2.3.1 Create the Associated MySQL Users
	2.3.2 Configuration File
	2.3.3 Configuration File Sections
	2.3.3.1 Section DEFAULT
	2.3.3.2 Section storage
	2.3.3.3 Section servers
	2.3.3.4 Section protocol.xmlrpc
	2.3.3.5 Section protocol.mysql
	2.3.3.6 Section executor
	2.3.3.7 Section logging
	2.3.3.8 Section sharding
	2.3.3.9 Section statistics
	2.3.3.10 Section failure_tracking
	2.3.3.11 Section connector

	2.3.4 The Configuration Parameter (--param)

	2.4 Starting and Stopping MySQL Fabric Nodes
	2.5 Old Configuration System

	Chapter 3 Quick Start
	3.1 Example: Fabric and Replication
	3.2 Example: Fabric and Sharding
	3.2.1 Introduction to Sharding
	3.2.2 Sharding Scenario

	Chapter 4 The mysqlfabric Utility
	4.1 Getting Help
	4.2 Dump Commands
	4.3 Event Commands
	4.4 Group Commands
	4.5 Manage Commands
	4.6 Provider Commands
	4.7 Role Commands
	4.8 Server Commands
	4.9 Sharding Commands
	4.10 Snapshot Commands
	4.11 Statistics Commands
	4.12 Threat Commands
	4.13 User Commands

	Chapter 5 Fabric Utility Command Matrix
	Chapter 6 Backing Store
	6.1 Backing Store Tables
	6.2 Protecting the Backing Store

	Chapter 7 Using MySQL Fabric with Pacemaker and Corosync
	7.1 Introduction
	7.2 Pre-requisites
	7.3 Target Configuration
	7.4 Setting up and testing your system
	7.4.1 Configure Network
	7.4.2 Install all packages
	7.4.3 Configure DRBD
	7.4.4 Configure MySQL Server
	7.4.5 Configure MySQL Fabric
	7.4.6 Configure Corosync and Pacemaker

	7.5 Key administrative tasks

	Chapter 8 Using Connector/Python with MySQL Fabric
	8.1 Installing Connector/Python with MySQL Fabric Support
	8.2 Requesting a Fabric Connection
	8.3 Providing Information to Choose a MySQL Server

	Chapter 9 Using Connector/J with MySQL Fabric
	9.1 Installing Connector/J with MySQL Fabric Support
	9.2 Loading the Driver and Requesting a Fabric Connection
	9.3 Providing Information to Choose a MySQL Server
	9.4 MySQL Fabric Configuration for Running Samples
	9.5 Running Tests
	9.6 Running Demonstration Programs
	9.7 A Complete Example: Working with Employee Data
	9.8 How Connector/J Chooses a MySQL Server
	9.9 Using Hibernate with MySQL Fabric
	9.10 Connector/J Fabric Support Reference
	9.10.1 Connection Properties
	9.10.2 FabricMySQLConnection API

	Chapter 10 Using Connector/Net with MySQL Fabric
	10.1 System Requirements
	10.2 Set up the MySQL Fabric Plugin
	10.3 Using MySQL Fabric Groups
	10.4 Using Ranged Sharding

	Chapter 11 MySQL Workbench and MySQL Fabric Integration
	Chapter 12 MySQL Fabric Frequently Asked Questions

