Exploring Randomly Wired Neural Networks for Image Recognition

本文探讨了随机连接神经网络在图像识别任务中的潜力,通过对比标准ResNet架构,提出了名为RandWire的模型。研究发现,随机图结构能够在ImageNet基准测试中取得高度竞争力的结果。网络设计过程包括两个步骤,使用三种经典随机图模型(ER, BA, WS)生成不同的网络结构。实验表明,小世界(WS)模型在性能上表现最佳。此外,网络的连接方式与选择的操作正交,随机连接模型可以与手动设计或新架构搜索的最新模型相媲美。" 85624195,8236579,《算法导论》第三版 分治策略习题详解,"['算法导论', '算法', '分治法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
In traditional connnection is the models how computational network wired is crucial to build intelligent machines. In the early days of AI, pioneers including Turing, Minsky, Rosenblatt all have randomly wired machines

在这里插入图片描述
Here we show serveral neural network architectures we design on the right comparing to the standard ResNet architecture . our mode seemed a bit crazy ,we can our model RandWire .We’ll see the random graph structures can achieve highly competitive results on imageNet benchmark .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SimonChenHere

打赏奖励,以资鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值