深度学习可解释性资料整合

该资源集合关注深度学习在自然语言处理(NLP)中的可解释性,包括视频讲解、论文、代码和教程。视频中Miles Cranmer探讨将神经网络转化为解析方程的方法,通过稀疏化隐空间和符号回归来发现物理定律。此外,还提供了EMNLP 2020的解释NLP模型预测教程、现代NLP与可解释性需求的关系,以及多项NLP可解释性的研究论文和博客链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SimonChenHere

打赏奖励,以资鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值