李宏毅机器学习2021】机器学习模型的可解释性 (Explainable ML)

本文探讨了机器学习模型的可解释性和解释能力的区别。explainable ML致力于为原本难以理解的黑箱模型提供解释,而Interpretability则关注于模型内部的透明性和可理解性,允许直接洞察其工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

explainable 和 Interpretability是有区别的:
explainable是指的是一个东西原来是个黑箱,我们想办法赋予其解释的能力,就是explainable,

Interpretability,是指的是这个东西本来就不是黑箱,本来就知道其内容,叫做Interpretability。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SimonChenHere

打赏奖励,以资鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值