【人工智能的数学基础】张量分解(Tensor Decomposition)

本文介绍了张量分解的基础概念,包括Tucker分解和CP分解,并探讨了它们在修复缺失数据中的应用。张量是多维数组的扩展,常用于描述物理现象。Tucker分解通过核张量和因子矩阵近似原始张量,而CP分解将张量表示为因子向量的外积和。两种方法都可通过交替最小二乘法进行优化,并能用于处理数据缺失的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

【人工智能的数学基础】张量分解(Tensor Decomposition)

Tensor Decomposition(Factorization).

张量的概念

张量是一种数学对象,它可以用来描述物理现象的各种性质,如力、速度、电场、磁场等。张量可以看作是多维数组的扩展,它可以有任意数量的维度和任意形状的大小。在物理学、工程学和计算机科学等领域中,张量广泛应用于各种问题的建模和求解。

张量是一个数学对象,它可以用来描述物理、工程、计算机科学等领域中的各种量和变量。简单来说,张量是一个多维数组,可以表示向量、矩阵等对象。

下面是一个二阶张量的示例,它可以表示一个矩阵:

T = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] \mathbf{T} = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} &am

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值