多任务学习(Multi-Task Learning)

本文详细介绍了多任务学习的概念、特点及网络结构,包括硬参数共享和软参数共享的不同方法。同时探讨了多任务学习的损失函数设计,特别是权重的设置策略,如帕累托最优、根据任务状态设置权重等,为实际应用提供指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多任务学习(Multi-Task Learning)

Multi Task Learning.

本文目录:

  1. 多任务学习的定义及特点
  2. 多任务学习的网络结构
  3. 多任务学习的损失函数

1. 多任务学习的定义及特点

多任务学习(multi-task learning, MTL)是指同时学习多个属于不同领域(domain)的任务,并通过特定任务的领域信息提高泛化能力。

MTL improves generalization by leveraging the domain-specific information contained in the training signals of related tasks.

多任务学习的特点如下:

  • 同时学习多个任务,若某个任务中包含对另一个任务有用的信息,则能够提高在后者上的表现;
  • 具有正则化的效果,即模型不仅需要在一个任务上表现较好,还需要再别的任务上表现好;相当于引入了归纳偏置(inductive bias),即倾向于学习到在多个任务上表现都比较好的特征;
  • 模型可以共享部分结构,降低内存占用(memory fo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值