多任务学习(Multi-Task Learning)
Multi Task Learning.
本文目录:
- 多任务学习的定义及特点
- 多任务学习的网络结构
- 多任务学习的损失函数
1. 多任务学习的定义及特点
多任务学习(multi-task learning, MTL)是指同时学习多个属于不同领域(domain)的任务,并通过特定任务的领域信息提高泛化能力。
MTL improves generalization by leveraging the domain-specific information contained in the training signals of related tasks.
多任务学习的特点如下:
- 同时学习多个任务,若某个任务中包含对另一个任务有用的信息,则能够提高在后者上的表现;
- 具有正则化的效果,即模型不仅需要在一个任务上表现较好,还需要再别的任务上表现好;相当于引入了归纳偏置(inductive bias),即倾向于学习到在多个任务上表现都比较好的特征;
- 模型可以共享部分结构,降低内存占用(memory fo