AI Transformer:最新进展及其应用场景解析

本文深入探讨Transformer模型,从基本概念到核心算法,包括Attention机制、Multi-Head Attention、Positional Encoding等,并提供代码实例,帮助理解其工作原理,适用于自然语言处理、文本生成等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

随着人工智能(AI)技术的飞速发展,深度学习(DL)和Transformer模型已经成为最具代表性的两个研究方向。近年来,两者在自然语言处理、图像识别、文本生成等领域均取得重大突破,在各行各业产生了广泛影响。本文将从最新研究成果和相关应用角度出发,综合介绍下Transformer模型及其一些常用算法,并通过实例的形式对Transformer模型进行演示,帮助读者理解Transformer模型的运作原理,更好地运用到实际生产环境中。

2.基本概念术语说明

1. Transformer概述

Transformer是一个基于Attention机制的NLP模型,由一个Encoder和一个Decoder组成。其中Encoder接收输入序列(词或符号),将其编码为固定长度的向量,并通过Attention模块对输入序列进行关注。Decoder生成输出序列(词或符号),也采用这种方式对上下文信息进行关注。整个模型无需记忆功能,直接利用自注意力机制即可实现序列到序列(Sequence to Sequence, Seq2Seq)的映射转换。因此,Transformer模型被认为具有较强的计算效率,同时可解决序列建模中的长期依赖问题。

2. Transformer模型结构

图1 Transformer模型架构

3. Attention机制

Attention mechanism是一种让模型自动“关注”输入序列某些位置

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值