Building A Neural Network From Scratch in Python

本文介绍了人工神经网络的基础概念,如神经元、正向传播和反向传播算法,并使用Python构建了一个简单的神经网络,训练它对MNIST手写数字进行分类。读者将通过实例学习神经网络的搭建和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

人工神经网络(Artificial Neural Networks, ANN)是一种模仿人脑神经元网络的计算模型。它由输入层、输出层、隐藏层组成,其中每层包括多个神经元节点。ANN可以学习和识别复杂的数据模式。本文将使用Python语言,基于全连接网络结构,构建一个简单的神经网络并训练它对手写数字数据进行分类。通过该过程,读者可以了解到机器学习领域最基础也是最重要的算法之一——人工神经网络的原理及其实现方法。

2.基本概念术语说明

2.1.什么是人工神经网络?

人工神经网络(Artificial neural network)是指由简单神经元组成的具有广泛的普适性和应用能力的计算系统。该系统可以模拟人类大脑的工作方式,并能够处理复杂的问题。它由多个隐藏层组成,每个隐藏层又由多达上百个节点相连,这样就形成了一个“网”状结构,输入数据首先被送入输入层,然后传递到各个隐藏层,逐层向后传递,最后再进入输出层。在隐藏层中,每个节点都接收多个输入信号并进行加权求和运算,激活函数作用后产生输出信号。输出信号即代表了输入数据所属的类别或概率值。因此,输出层中的神经元数量越多,网络可以表示的模式就越复杂。

2.2.为什么要使用人工神经网络?

为了解决很多实际问题,目前已经出现了多种神经网络模型,如卷积神经网络、循环神经网络、递归神经网络等,它们都是基于ANN模型的扩展,它们能够自动学习特征、提取有效信息、解决复杂任务。但无论这些模型如何进步,其核心还是基于ANN模型,所以对于想要学习人工神经网络

评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值