作者:禅与计算机程序设计艺术
1.简介
随着互联网技术的飞速发展,人工智能技术也日益走向成熟。然而,在处理一些领域,依然存在一些棘手的问题。如自然语言处理(Natural Language Processing)、计算机视觉(Computer Vision),机器学习等领域。近年来,随着深度学习的火爆,越来越多的人开始研究如何用神经网络来处理这些问题。本文将从零开始构建一个简单的聊天机器人模型,并通过TensorFlow搭建和训练这个模型。
一、背景介绍
聊天机器人是2010年由微软提出的新兴技术。它可以根据用户输入的信息来进行自动回复,并具有很强的交流能力。由于其巨大的市场前景,目前已经成为生活中的必备助手。近年来,越来越多的公司、机构和个人开始涉足这一领域。例如,亚马逊、微软小冰等都推出了自己的聊天机器人产品。
二、基本概念术语说明
神经网络:神经网络是模拟生物神经元网络行为的一种数学模型。它由输入层、输出层和隐藏层组成,其中隐藏层又被分成多个不同的子层。输入层接收外部输入,经过各个隐藏层的计算得到输出结果。输入层和隐藏层之间存在着相互连接的权重矩阵。
反向传播:反向传播是神经网络训练中非常重要的方法。它可以让神经网络自动更新权值,使得误差最小化,从而提高模型的准确性。
词向量:词向量是用来表示文本的特征向量。它是一个高维空间里的实数向量,每个向量对应于词汇表中的一个词。它可以帮助我们快速地判断两个词是否含义上相似,或者对话系统能够根据上下文理解用户输