作者:禅与计算机程序设计艺术
1.背景介绍
推荐系统(Recommendation System)是互联网领域的一个重要研究方向,它通过分析用户的历史行为、社交网络、商品消费习惯等信息,提出个性化推荐的产品或服务给用户。推荐系统最早起源于图书馆领域,后面扩展到电影院、音乐网站、体育比赛网站、论坛网站等各个领域。目前,基于人工智能的推荐系统越来越多地应用在各行各业,如搜索引擎、社交媒体、电商平台、游戏、零售等。其中,Facebook 在近几年的产品迭代过程中,对推荐系统进行了深度改造,推出了一个全新的推荐系统体系,称之为 Facebook 的推荐引擎系统(FREES)。本文将从 FREES 的主要组件、工作机制、优化手段三个方面对 Facebook 的推荐系统进行详细介绍。
2.核心概念与联系
2.1 概念定义
- 用户:指推荐系统提供推荐服务的终端用户;
- 物品(Item):指被推荐的实体对象,如电影、音乐、新闻等;
- 召回(Recall):指从海量候选集中筛选出用户可能感兴趣的物品的过程;
- 抽样(Sampling):指按照一定规则随机选取部分数据用于训练或测试模型的过程;
- 交叉熵损失函数:是一个用来衡量两个概率分布间差异的指标,能够有效刻画不同分布之间的距离,常用的评估指标之一;
- 正则化项:是在损失函数上加权一些约束条件使得参数更容易收敛到全局最优解,避免过拟合。
2.2 系统组件
FREES 的主要组件如下所示:
-
<