1. 背景介绍
1.1 大语言模型的兴起与应用
近年来,随着深度学习技术的快速发展,大语言模型(Large Language Model,LLM)逐渐成为人工智能领域的研究热点。这类模型通常包含数十亿甚至数千亿个参数,能够在海量文本数据上进行训练,并展现出惊人的语言理解和生成能力。例如,OpenAI 的 GPT-3、Google 的 BERT 和 LaMDA 等模型,已经在机器翻译、文本摘要、问答系统、代码生成等众多领域取得了令人瞩目的成果。
1.2 有监督微调的必要性
尽管大语言模型在通用领域表现出色,但在特定任务上,其性能往往受限于训练数据。为了提升模型在特定任务上的表现,通常需要进行有监督微调(Supervised Fine-tuning)。这一过程需要使用标注好的数据对预训练的模型进行进一步训练,使其能够更好地适应目标任务的数据分布和特征。
1.3 有监督微调数据的挑战
然而,构建高质量的标注数据往往需要耗费大量的时间和人力成本。尤其是在一些专业领域,获取足够的标注数据更是困难重重。因此,如何自动化地构建有监督微调数据,成为提升大语言模型应用效率的关键问题。
2. 核心概念与联系
2.1 数据增强
数据增强(Data Augmentation)是指通过对已有数据进行变换,生成新的训练数据的技术。常见的数据增强方法包括:
- 文本替换: 使用同义词