1. 背景介绍
1.1. 疫情防控常态化背景下的挑战
自2020年初新冠疫情爆发以来,全球范围内的人们都经历了一场前所未有的公共卫生危机。尽管疫苗接种和治疗手段不断进步,但新冠病毒仍在不断变异,疫情防控形势依然严峻。为了有效控制疫情传播,各国政府纷纷采取了一系列防控措施,其中佩戴口罩被证明是最简单有效的方法之一。
然而,在疫情防控常态化背景下,如何高效、准确地监督和管理口罩佩戴情况成为了一项重大挑战。传统的人工检查方式存在着效率低下、易受主观因素影响等问题,难以满足大规模人群密集场所的防控需求。
1.2. 人工智能技术为疫情防控带来的机遇
近年来,以深度学习为代表的人工智能技术取得了突飞猛进的发展,为解决上述问题提供了新的思路和方法。深度学习可以通过训练大量的图像数据,自动学习和识别图像中的复杂特征,从而实现对口罩佩戴情况的自动检测。
1.3. 本文目标
本文旨在介绍一种基于深度学习的疫情防控口罩佩戴检测系统,该系统能够自动识别图像和视频中的人脸,并判断其是否佩戴口罩,从而为疫情防控提供高效、准确的技术支持。
2. 核心概念与联系
2.1. 深度学习
深度学习是机器学习的一个分支,其核心思想是通过构建多层神经网络来模拟人脑学习和思考的过程。深度学习模型能够从海量数据中自动学习特征,并进行模式识别,在图像识别、语音识别、自然语言处理等领域取得了突破性进展。