随机森林 原理与代码实例讲解
1.背景介绍
随机森林(Random Forest)是一种广泛应用于机器学习领域的强大算法,它属于集成学习方法的一种。集成学习的核心思想是通过构建并结合多个基础模型来提高预测性能,从而获得比单一模型更加准确、鲁棒的预测结果。
随机森林算法由Leo Breiman于2001年提出,它以决策树(Decision Tree)为基础模型,通过构建多个决策树并将它们的预测结果进行组合,从而形成一个强大的集成模型。随机森林在解决分类和回归问题时都表现出了优异的性能,因此被广泛应用于各个领域,包括计算机视觉、自然语言处理、生物信息学等。
2.核心概念与联系
2.1 决策树(Decision Tree)
决策树是随机森林的基础模型,它是一种树形结构的监督学习算法,用于解决分类和回归问题。决策树通过对特征进行递归分割,将数据空间划分为多个区域,每个区域对应一个预测值。
决策树的构建过程如下:
- 从根节点开始,选择一个最优特征进行数据划分。
- 对于每个子节点,重复步骤1,直到满足停止条件。
- 生成叶节点,为每个叶节点分配一个预测值。
决策树具有易于理解和解释的优点,但也存在过拟合的风险。单棵决策树的泛化能力有限,因此需要集成多棵决策树来提高性能。
2.2 集成学习(Ensemble Learning)
集成学