人工神经网络:深度学习的前世

人工神经网络:深度学习的前世

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming / TextGenWebUILLM

人工神经网络:深度学习的前世

1. 背景介绍

1.1 问题的由来

在探索人类智能的本质过程中,科学家们一直在寻找一种可以模仿生物大脑工作机制的人工系统。随着计算机硬件能力的显著提高和数据存储容量的爆炸式增长,人们对构建具有“类人”智能的机器的兴趣日益增加。这一需求推动了人工智能研究领域的一系列突破,其中最引人注目的便是人工神经网络(Artificial Neural Networks, ANNs)及其衍生出的深度学习技术。

1.2 研究现状

当前,人工神经网络已经成为解决复杂问题的核心工具之一,在图像识别、自然语言处理、语音识别、自动驾驶等多个领域展现出了惊人的效果。然而,传统神经网络的局限性——如过拟合、难以解释以及对超参数调整的敏感度——促使研究人员寻求改进方法。因此,近年来出现了许多基于神经网络的新架构和技术,如卷积神经网络(Convolutional Neural Networks, CNNs)、循环神经网络(Recurrent Neural Networks, RNNs)、长短期记忆网络(Long Short-Term Memory networks, LSTMs)、生成对抗网络(Generative Adversarial Networks, GANs)等,这些都极大地扩展了神经网络的应用范围。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值