基于深度学习的推荐系统设计与实现
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming / TextGenWebUILLM
关键词:深度学习, 推荐系统, 用户行为预测, 物品相似度计算, 协同过滤, 深度神经网络
1. 背景介绍
1.1 问题的由来
在互联网时代,用户每天都会接触到海量的信息和服务。为了提高用户体验并促进平台的商业化,推荐系统应运而生。
推荐系统的目的是根据用户的偏好和历史行为,从庞大的信息库中筛选出最符合用户需求的内容或商品进行个性化推荐。这不仅有助于增加用户的满意度,还能有效提升商业转化率和用户留存时间。
1.2 研究现状
当前推荐系统已经广泛应用于电商平台、视频流媒体服务、社交网络等多个场景,并且随着深度学习的发展,越来越多复杂的推荐策略被引入。深度学习方法如深度神经网络(DNN)、卷积神经网络(CNN)以及递归神经网络(RNN)等,因其强大的特征表示能力,在处理高维度稀疏数据时展现出优越性能。这些技术允许模型学习更深层次的特征表示,从而提升推荐准确性和多样性。
1.3 研究意义
研究基于深度学习的推荐系统具有重要意义,主要体现在以下几个方面:
- <