【大模型应用开发 动手做AI Agent】LangChain和Agent开发

【大模型应用开发 动手做AI Agent】LangChain和Agent开发

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:LangChain, AI Agent, 大模型, 编程式AI, 自然语言处理

1. 背景介绍

1.1 问题的由来

随着人工智能技术的飞速发展,大模型(Large Language Models,LLMs)如BERT、GPT-3等在自然语言处理(NLP)领域取得了显著的成果。然而,这些模型在应用开发过程中仍面临一些挑战:

  • 编程式AI的缺失:LLMs擅长处理自然语言,但在编程、逻辑推理等任务上表现欠佳。
  • 可解释性和可控性差:LLMs的决策过程难以解释,导致结果的可信度和可控性不足。
  • 多模态数据的处理:LLMs通常只针对文本数据,难以处理图像、音频等多模态数据。

为了解决这些问题,研究人员提出了LangChain和AI Agent的概念,旨在将LLMs与其他技术相结合,构建更加强大、可解释和可控的AI系统。

1.2 研究现状

近年来,LangChain和AI Agent的研究取得了以下成果:

  • LangChain:将LLMs与编
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值