Transformer大模型实战:BERTSUM 模型的性能
关键词:Transformer, BERT, Summarization, 模型性能, 微调, NLP
1. 背景介绍
1.1 问题的由来
随着信息量的爆炸式增长,对海量文本进行高效总结的需求日益增长。文本摘要作为自然语言处理(NLP)领域的关键任务之一,旨在自动生成文章或文档的简洁、连贯摘要,帮助用户快速了解文本内容。
近年来,基于深度学习的文本摘要技术取得了显著进展,其中Transformer架构因其强大的并行处理能力和端到端性质,成为了实现文本摘要任务的热门选择。BERTSUM模型作为基于BERT的文本摘要模型,凭借其优异的性能在多个数据集上取得了领先地位。
1.2 研究现状
文本摘要技术经历了多个发展阶段,从早期的基于规则和模板的方法,到基于统计模型的方法,再到基于深度学习的方法。近年来,基于深度学习的文本摘要技术取得了显著进展,主要分为以下几类:
- 基于RNN的摘要模型:如LSTM、GRU等,通过循环神经网络捕捉文本序列的长期依赖关系。
- 基于Transformer的摘要模型:如BERTSUM、T5等,利用Transformer架构的并行处理能力,实现端到端的文本摘要。
- 基于端到端解码的摘要模型:如 Pointer-Generator Network,通