第二部分:人工智能研究的开拓者
在人工智能的发展历程中,有一些关键人物的贡献推动了整个领域的进步。作为这些开拓者中的一员,我有幸参与并见证了神经网络和深度学习领域的重大突破。在这一部分,我将详细介绍我在神经网络研究早期所做的贡献,以及这些工作如何为后来的深度学习革命奠定了基础。
第4章:神经网络研究的早期贡献
本章将聚焦于我在神经网络研究早期阶段的主要贡献。我们将深入探讨玻尔兹曼机和受限玻尔兹曼机的发展,反向传播算法的改进,以及我在面对挑战时对连接主义的坚持。这些工作不仅推动了神经网络领域的发展,也为后来的深度学习革命铺平了道路。
4.1 玻尔兹曼机与受限玻尔兹曼机
在我的研究生涯早期,我就对如何构建能够学习和适应的智能系统产生了浓厚的兴趣。这种兴趣最终引导我走向了神经网络研究,特别是玻尔兹曼机(Boltzmann Machine)的研究。玻尔兹曼机是一种受物理学启发的神经网络模型,它试图模拟物质在不同能量状态下的行为。
玻尔兹曼机的起源与基本原理
玻尔兹曼机的名字来源于19世纪奥地利物理学家路德维希·玻尔兹曼(Ludwig Boltzmann),他在统计力学领域做出了开创性的贡献。玻尔兹曼机试图将统计力学的原理应用到神经网络中,创造出一种能够学习复杂概率分布的模型。
我在1980年代初期开始研究玻尔兹曼机,当时神经网络领域正处于低谷期。许多研究者对神经网络失去了信心,认为它无法解决复杂的问题。然而,我坚信神经网络有巨大的潜力,只是我们还没有找到正确的方法来训练它