模型蒸馏在AI原生NLP应用中的实践案例:从理论到部署的全流程解析
元数据框架
标题
模型蒸馏在AI原生NLP应用中的实践案例:从理论到部署的全流程解析
关键词
模型蒸馏, AI原生NLP, 教师-学生框架, 知识转移, 轻量化模型, 部署优化, 实践案例
摘要
随着大模型(如BERT、GPT)在NLP任务中的广泛应用,其高计算成本与部署难度成为落地瓶颈。模型蒸馏(Knowledge Distillation)作为一种知识转移技术,通过将大模型(教师)的知识压缩到小模型(学生)中,实现“精度-效率”的平衡,成为AI原生NLP应用的核心优化手段。本文从理论基础、架构设计、实现机制、实际案例到高级考量,系统解析模型蒸馏的全流程,并结合DistilBERT、TinyBERT等经典案例,为开发者提供从理论到部署的可操作指导。