实时推理系统的成本监控:架构师的工具与指标
引言:为什么实时推理的成本监控如此重要?
在AI大规模落地的今天,实时推理系统(Real-Time Inference System)已经成为支撑智能业务的核心基础设施——从电商的实时推荐、金融的 fraud 检测,到自动驾驶的环境感知,再到生成式AI的实时对话(如ChatGPT),都需要在毫秒级延迟内完成模型推理并返回结果。
然而,实时推理的成本结构与批量推理(Batch Inference)有着本质区别:
- 批量推理:可以在空闲时段(如深夜)调度廉价资源,资源利用率高(通常>80%),成本易控制;
- 实时推理:需要7×24小时保持资源待命(否则会导致请求超时),且流量波动大(如电商大促的峰值QPS可能是平时的10倍),容易出现“高 idle 成本”(资源闲置但仍在计费)或“峰值资源短缺”(导致延迟飙升)的矛盾。
根据Gartner的报告,实时推理的成本占比已超过模型训练(2023年数据),且约30%的企业因缺乏有效的成本监控的工具,导致实时推理成本超支20%以上。
作为架构师,我们需要回答以下问题:
- 实时推理系统的成本由哪些部分组成?
- 如何量化和监控这些成本?
- 如何通过