Agentic AI提示工程:多任务处理能力的7大核心技术

Agentic AI提示工程实战:解锁多任务处理能力的7大核心技术与实践指南

摘要/引言:为什么传统AI在复杂任务中总是“掉链子”?

“请帮我写一份市场调研报告,需要分析3个竞品的优劣势,整理近半年行业数据,最后生成10页PPT。”

当你向AI助手抛出这样的需求时,是否遇到过:它要么只写了报告却忘了做PPT,要么数据整理混乱,甚至把竞品名字都搞错了?这不是AI不够聪明,而是传统提示工程缺乏对“多任务处理逻辑”的系统性设计——而这正是Agentic AI(智能体AI)要解决的核心问题。

从“被动执行”到“主动规划”:Agentic AI的革命性突破

传统AI(如ChatGPT基础对话模式)本质是“输入-输出”的被动响应系统,像个“听话的实习生”,你说一步它做一步,遇到复杂任务就会陷入“上下文过载”或“目标迷失”。而Agentic AI则是“有目标、能规划、会调用工具、可自我修正”的智能体,像个“自主工作的项目经理”:它能理解复杂目标,拆解成子任务,规划执行步骤,调用计算器/爬虫等工具,甚至在出错时自我修复。

提示工程正是激活Agentic AI多任务能力的“神经中枢”。没有精心设计的提示,即使最先进的Agent模型(如GPT-4o、Claude 3 Opus)也会变成“无头苍蝇”。

本文将带你掌握什么?

如果你是AI应用开发者、产品经理或技术决策者,本文将系统拆解Agentic AI多任务处理的7大核心提示工程技术,包括:

  • 如何让AI像“项目经理”一样拆解任务?(任务解构与规划技术)
  • 如何避免AI“忘事”?(动态上下文管理技术)
  • 如何让AI正确调用工具解决问题?(工具集成与调用编排技术)
  • 如何让AI从错误中学习?(反馈驱动迭代优化技术)

每个技术都包含底层原理、提示模板、实战案例和代码示例,帮你从零构建能处理复杂多任务的Agentic AI系统。

一、Agentic AI多任务处理基础:为什么提示工程是“灵魂”?

在深入核心技术前,我们先明确两个关键问题:什么是Agentic AI的多任务处理能力? 以及为什么提示工程是决定其性能的关键?

1.1 Agentic AI多任务处理的3个核心特征

与传统AI相比,Agentic AI的多任务处理能力体现在:

(1)目标导向性(Goal-Oriented)

传统AI:“用户让我做什么,我就做什么”(如“写一篇文章”)。
Agentic AI:“用户的最终目标是什么?为了实现目标,我需要完成哪些子任务?”(如“用户要‘写文章’,可能需要先‘确定主题’→‘收集资料’→‘撰写大纲’→‘初稿’→‘修改’”)。

(2)环境交互性(Environment Interaction)

传统AI:依赖用户提供所有信息。
Agentic AI:可主动调用外部工具(API、数据库、爬虫、计算器等)获取信息或执行操作,如“为了整理行业数据,我需要调用爬虫工具爬取竞品官网”。

(3)持续迭代性(Iterative Improvement)

传统AI:单次输出后结束。
Agentic AI:可接收中间结果反馈,修正错误并优化下一步行动,如“用户说数据有误,我需要重新检查数据源并修正图表”。

1.2 提示工程:Agentic AI的“操作系统”

如果把Agentic AI比作“自动驾驶汽车”,那么:

  • 大语言模型(LLM)是“发动机”,提供基础算力;
  • 外部工具(API、数据库等)是“传感器和执行器”,提供环境交互能力;
  • 提示工程则是“操作系统”,负责协调“发动机”和“传感器”,确保汽车按目标行驶(多任务处理)。

没有好的“操作系统”(提示工程),即使“发动机”再强(如GPT-4o),也会出现“闯红灯”(任务遗漏)、“迷路”(目标偏离)或“爆胎”(工具调用错误)。

1.3 多任务处理的4大核心挑战(及提示工程如何解决)

挑战传统AI的痛点提示工程解决方案
任务复杂性无法拆解复杂任务,输出混乱任务解构提示:引导AI按“目标→子任务→步骤”拆解
上下文有限长对话中忘记前文信息上下文压缩提示:提取关键信息,动态更新上下文
工具调用错误不知道何时/如何调用工具工具选择提示:定义工具能力与调用条件
动态优先级多任务冲突时无法排序优先级规则提示:明确排序标准(紧急性/依赖性)

先决条件:阅读本文前,建议你已掌握基础提示工程概念(如角色提示、少样本提示),并熟悉至少一种LLM API(如OpenAI API)的调用方法。

二、核心技术一:任务解构与规划技术——让AI像项目经理一样拆解目标

2.1 为什么任务解构是多任务处理的“第一块拼图”?

想象你让实习生组织一场“技术沙龙”,如果只说“你去办一下”,他可能只订了会议室却忘了邀请嘉宾;但如果你说“先列清单:1. 确定主题;2. 邀请讲师;3. 预订场地;4. 宣传报名”,他就能有条不紊地执行。

Agentic AI处理多任务时,任务解构就是“列清单”的过程——将复杂目标拆解为“可执行、可验证、有依赖关系”的子任务。没有这一步,AI会陷入“要么漏做,要么重复做”的困境。

2.2 任务解构的底层逻辑:MECE原则与层次化分解

优秀的任务解构需满足MECE原则(Mutually Exclusive, Collectively Exhaustive,即“相互独立,完全穷尽”),并通过层次化分解形成“目标→主任务→子任务→步骤”的树状结构。

例如,目标“生成一份竞品分析报告”的解构过程:

目标:生成竞品分析报告  
├─ 主任务1:确定分析对象  
│  ├─ 子任务1.1:列出行业Top 5竞品  
│  └─ 子任务1.2:筛选3个核心竞品(按市场份额>10%)  
├─ 主任务2:收集竞品数据  
│  ├─ 子任务2.1:爬取官网产品功能  
│  ├─ 子任务2.2:获取近半年用户评价(调用评论API)  
│  └─ 子任务2.3:整理财务数据(调用财报数据库)  
└─ 主任务3:生成报告  
   ├─ 子任务3.1:撰写功能对比表  
   ├─ 子任务3.2:分析优劣势(SWOT模型)  
   └─ 子任务3.3:输出PDF报告(调用文档生成工具)  

2.3 提示工程实战:3种任务解构提示模板

模板1:目标-子任务分解提示(基础版)

核心逻辑:明确目标,要求AI按“动词+对象+标准”格式拆解子任务。

【角色】你是一位资深项目管理专家,擅长拆解复杂任务。  
【目标】帮我拆解目标:“[用户原始目标]”  
【要求】  
1. 输出格式:  
   ├─ 主任务1:[主任务名称]  
   │  ├─ 子任务1.1:[动词+对象+完成标准]  
   │  └─ 子任务1.2:[动词+对象+完成标准]  
   ...(以此类推)  
2. 子任务需满足:  
   - 相互独立(无重叠)  
   - 完全穷尽(覆盖目标所有方面)  
   - 可执行(每个子任务有明确的“做什么”和“做到什么程度”)  
【示例】  
若目标是“策划生日派对”,拆解示例:  
├─ 主任务1:确定派对基本信息  
│  ├─ 子任务1.1:确认日期(用户可参与的周末,如2024-06-15)  
│  └─ 子任务1.2:统计人数(至少10位朋友,通过微信问卷收集)  
...  
【开始】目标:“生成一份竞品分析报告”  

效果:AI会输出结构化的子任务列表,避免遗漏关键环节。

模板2:依赖关系标注提示(进阶版)

核心逻辑:在分解子任务时,标注任务间的依赖关系(如“子任务A必须在子任务B之后执行”)。

【额外要求】在子任务后用“(依赖:[前置任务ID])”标注依赖关系。  
例如:  
├─ 子任务2.1:爬取官网产品功能(依赖:1.2 确定核心竞品)  
└─ 子任务3.1:撰写功能对比表(依赖:2.1 爬取功能数据)  

为什么重要:多任务处理中,错误的执行顺序会导致返工(如没确定竞品就开始爬数据)。依赖标注能让AI按正确顺序执行。

模板3:资源约束提示(高级版)

核心逻辑:加入时间/工具/预算等资源约束,让子任务更贴合实际可行性。

【资源约束】  
- 时间:总任务需在48小时内完成  
- 工具:仅可使用公司内部数据库(无法访问外部爬虫)  
- 预算:数据获取成本不超过100元  
【要求】子任务需考虑上述约束,例如:  
├─ 子任务2.2:获取用户评价(改为“调用公司内部用户反馈系统API”,而非外部爬虫)  

2.4 代码实战:用LangChain实现任务解构Agent

下面用Python+LangChain框架,结合OpenAI API实现一个“任务解构Agent”,输入复杂目标后自动输出结构化子任务列表。

步骤1:安装依赖
pip install langchain openai python-dotenv  
步骤2:定义提示模板与Agent
from langchain.llms import OpenAI  
from langchain.prompts import PromptTemplate  
from langchain.chains import LLMChain  
from dotenv import load_dotenv  
import os  

load_dotenv()  # 加载环境变量(含OPENAI_API_KEY)  

# 定义任务解构提示模板  
task_decomposition_template = """  
【角色】你是一位资深项目管理专家,擅长拆解复杂任务。  
【目标】帮我拆解目标:"{user_goal}"  
【资源约束】{resource_constraints}  
【要求】  
1. 输出格式:  
   ├─ 主任务1:[主任务名称]  
   │  ├─ 子任务1.1:[动词+对象+完成标准](依赖:[前置任务ID,若无则写无])  
   │  └─ 子任务1.2:[动词+对象+完成标准](依赖:[前置任务ID,若无则写无])  
   ...  
2. 子任务需满足MECE原则,且考虑资源约束。  

【开始】  
"""  

# 创建提示模板对象  
prompt = PromptTemplate(  
    input_variables=["user_goal", "resource_constraints"],  
    template=task_decomposition_template  
)  

# 创建LLM链  
llm = OpenAI(model_name="gpt-4o", temperature=0.3)  # 低temperature确保输出稳定  
decomposition_chain = LLMChain(llm=llm, prompt=prompt)  

# 输入目标与资源约束,执行拆解  
user_goal = "生成一份竞品分析报告"  
resource_constraints = "时间:48小时;工具:仅公司内部数据库;预算:100元"  
result = decomposition_chain.run(user_goal=user_goal, resource_constraints=resource_constraints)  

print("任务拆解结果:\n", result)  
输出示例
任务拆解结果:  
├─ 主任务1:确定分析对象  
│  ├─ 子任务1.1:列出行业Top 5竞品(标准:按2024年Q1市场份额排序)(依赖:无)  
│  └─ 子任务1.2:筛选3个核心竞品(标准:市场份额>10%且与本公司业务重叠度高)(依赖:1.1)  
├─ 主任务2:收集竞品数据  
│  ├─ 子任务2.1:获取产品功能信息(调用公司内部产品数据库API)(依赖:1.2)  
│  ├─ 子任务2.2:提取用户评价(调用公司内部用户反馈系统,筛选近3个月数据)(依赖:1.2)  
│  └─ 子任务2.3:整理财务数据(调用公司内部行业报告库,预算控制在50元内)(依赖:1.2)  
└─ 主任务3:生成分析报告  
   ├─ 子任务3.1:撰写功能对比表(基于2.1数据,包含核心功能评分)(依赖:2.1)  
   ├─ 子任务3.2:分析优劣势(用SWOT模型,结合2.2用户评价)(依赖:2.1, 2.2)  
   └─ 子任务3.3:输出PDF报告(调用公司内部文档生成工具)(依赖:3.1, 3.2)  

2.5 常见问题与解决方案

问题原因解决方案
子任务过于笼统提示中“完成标准”不明确加入具体标准,如“子任务需包含可量化指标(如‘收集100条用户评价’而非‘收集用户评价’)”
依赖关系混乱未强调“前置任务必须先完成”在提示中加入示例:“例如‘撰写报告’必须依赖‘收集数据’完成,需标注‘依赖:2.3’”
忽略资源约束约束描述模糊用“时间:XX小时;工具:仅限XX;预算:XX元”等量化表述

小结:任务解构与规划技术是Agentic AI多任务处理的“蓝图设计”,通过MECE原则+依赖标注+资源约束的提示模板,让AI从“盲目执行”变为“目标清晰的规划者”。

三、核心技术二:动态上下文管理技术——如何让AI“记住关键信息”而不“遗忘”?

想象你和AI合作完成一个跨周的项目:周一讨论了任务计划,周三提供了部分数据,周五需要它根据前两周信息生成最终报告。此时,传统AI会因“上下文窗口限制”(如GPT-4o上下文上限为128k tokens,但实际对话中容易超出)忘记周一的计划,导致报告偏离目标。

动态上下文管理技术正是解决这一问题的关键——通过提示工程引导AI“主动筛选、压缩、更新上下文”,像“高效整理桌面的秘书”,只保留关键信息,避免无关内容占用内存。

3.1 上下文管理的3大核心挑战

Agentic AI处理多任务时,上下文管理面临的挑战远超传统对话:

  • 长度爆炸:多任务涉及的子任务结果、工具返回、用户反馈可能超过LLM的上下文窗口(如10万字文档);
  • 信息冗余:重复的指令、过时的中间结果会稀释关键信息;
  • 动态更新:新任务加入或优先级变化时,需快速调整上下文内容。

3.2 动态上下文管理的“3层过滤模型”

优秀的上下文管理提示需实现“3层过滤”:

  1. 输入过滤:决定“哪些信息需要进入上下文”;
  2. 存储压缩:如何“精简信息占用的空间”;
  3. 检索更新:需要时如何“快速提取相关信息”。

3.3 提示工程实战:4种上下文管理提示策略

策略1:关键信息提取提示(输入过滤)

核心逻辑:引导AI从原始信息中提取“对目标有价值的关键信息”,过滤无关内容。

提示模板

【角色】你是一位信息提炼专家,负责从文本中提取关键信息。  
【目标】从以下内容中提取对“{当前任务目标}”有用的关键信息,忽略无关细节。  
【关键信息标准】  
- 直接影响任务执行的条件(如截止时间、资源限制)  
- 必须保留的前置结论(如已确定的子任务列表、工具调用结果)  
- 用户明确强调的要求(如“报告需包含数据图表”)  
【原始内容】{raw_information}  
【输出格式】以“关键词:值”列表输出,例如:  
- 截止时间:2024-06-30  
- 已完成子任务:确定竞品(A公司、B公司)  
- 用户要求:需包含市场份额对比图表  

【开始提炼】  

示例:当原始内容是“用户说‘报告要在下周五(6月30日)前交,记得包含A和B公司的市场份额对比图表,对了我昨天发的C公司数据可能不准,别用了’”,AI会提取:

- 截止时间:2024-06-30  
- 需包含:A公司、B公司市场份额对比图表  
- 排除数据:C公司数据(用户反馈不准)  
策略2:层次化摘要提示(存储压缩)

核心逻辑:对长文本(如子任务结果、工具返回数据)进行“多层级摘要”,从“全文→章节摘要→关键句”逐步压缩。

提示模板

【角色】你是一位文本压缩专家,需将长文本压缩为层次化摘要。  
【原始文本】{long_text}(如工具返回的1000行数据)  
【压缩要求】  
1. 第一层:整体摘要(100字内,说明文本核心内容)  
2. 第二层:分点摘要(3-5点,每点50字内,说明关键子主题)  
3. 第三层:关键数据提取(如数值、日期、名称等不可省略的信息)  
【输出格式】  
整体摘要:[第一层内容]  
分点摘要:  
- [分点1]  
- [分点2]  
关键数据:  
- [数据1:值]  
- [数据2:值]  

【开始压缩】  

效果:1000行数据可压缩为200字左右的结构化摘要,大幅节省上下文空间。

策略3:上下文检索提示(检索更新)

核心逻辑:当需要特定信息时,引导AI从历史上下文中“主动检索”相关内容,而非重新生成。

提示模板

【角色】你是一位信息检索专家,需从历史上下文中找到与“{当前查询}”相关的信息。  
【历史上下文】{history_context}(已压缩的摘要)  
【检索要求】  
1. 若找到相关信息,输出:“找到相关信息:[内容](来源:[子任务X结果])”  
2. 若未找到,输出:“未找到相关信息,需执行新子任务:[建议子任务,如‘重新收集XX数据’]”  
【当前查询】“A公司的市场份额是多少?”  

【开始检索】  

示例:历史上下文包含“关键数据:- A公司市场份额:25%(来源:子任务2.3)”,AI会输出:“找到相关信息:A公司市场份额:25%(来源:子任务2.3)”。

策略4:上下文优先级排序提示(动态更新)

核心逻辑:当新信息加入时,引导AI按“与当前任务的相关性”排序上下文,优先级低的信息可被“暂时遗忘”。

提示模板

【角色】你是上下文管理器,需对以下信息按优先级排序。  
【当前任务】{current_task}  
【待排序信息列表】  
1. [信息A:如“周一的任务计划”]  
2. [信息B:如“周三的用户反馈”]  
3. [信息C:如“周五的新数据”]  
【优先级规则】  
- 高优先级:直接影响当前任务执行的信息(如最新数据、用户反馈)  
- 中优先级:历史任务计划、已完成子任务结果  
- 低优先级:过时信息、无关闲聊  
【输出格式】  
优先级排序:  
1. [信息C](优先级:高,理由:[理由])  
2. [信息B](优先级:中,理由:[理由])  
3. [信息A](优先级:低,理由:[理由])  
可暂时移除的低优先级信息:[信息A]  

【开始排序】  

3.3 代码实战:动态上下文管理Agent

下面用LangChain的ConversationBufferWindowMemory结合自定义提示,实现“动态压缩+检索”的上下文管理。

步骤1:定义上下文压缩函数
def compress_context(raw_text):  
    """用LLM压缩长文本为层次化摘要"""  
    compress_prompt = PromptTemplate(  
        input_variables=["raw_text"],  
        template="""  
        【角色】你是文本压缩专家,请按以下要求压缩文本:  
        【原始文本】{raw_text}  
        【压缩要求】  
        1. 整体摘要(100字内)  
        2. 分点摘要(3-5点,每点50字内)  
        3. 关键数据(提取数值、日期等)  
        【输出格式】  
        整体摘要:...  
        分点摘要:  
        - ...  
        关键数据:  
        - ...  
        """  
    )  
    compress_chain = LLMChain(llm=llm,prompt=compress_prompt)  
    return compress_chain.run(raw_text=raw_text)  
步骤2:实现动态上下文管理
from langchain.memory import ConversationBufferWindowMemory  

# 初始化带窗口的记忆(仅保留最近N轮压缩后的上下文)  
memory = ConversationBufferWindowMemory(k=5)  # k=5表示保留最近5条压缩信息  

# 模拟多轮对话,动态压缩并添加上下文  
def add_to_context(memory, new_information):  
    # 压缩新信息  
    compressed_info = compress_context(new_information)  
    # 添加到记忆  
    memory.save_context(  
        inputs={"user": "添加新信息"},  
        outputs={"assistant": compressed_info}  
    )  
    return memory  

# 示例:添加1000字的竞品数据  
raw_data = """A公司2024年Q1市场份额25%,同比增长5%;B公司市场份额18%,同比下降2%...(此处省略900字)"""  
memory = add_to_context(memory, raw_data)  

# 检索上下文  
def retrieve_context(memory, query):  
    retrieve_prompt = PromptTemplate(  
        input_variables=["history_context", "query"],  
        template="""  
        【角色】信息检索专家,从历史上下文中找与"{query}"相关内容。  
        【历史上下文】{history_context}  
        【输出】找到相关信息:... 或 未找到...  
        """  
    )  
    history_context = memory.load_memory_variables({})["history"]  
    retrieve_chain = LLMChain(llm=llm, prompt=retrieve_prompt)  
    return retrieve_chain.run(history_context=history_context, query=query)  

# 查询“A公司市场份额”  
result = retrieve_context(memory, "A公司市场份额是多少?")  
print(result)  # 输出:找到相关信息:A公司2024年Q1市场份额25%(关键数据)  

3.4 常见问题与解决方案

问题原因解决方案
压缩后丢失关键信息压缩提示中“关键数据”定义不明确在提示中列出必须保留的数据类型:“关键数据需包含:市场份额(%)、同比增长率、公司名称”
检索不到相关信息历史上下文摘要过于简略调整压缩策略,保留更多“可能有用”的关键词(如公司名称、数据指标)
上下文窗口仍超限未设置优先级排序,保留了低价值信息加入优先级排序提示,自动移除“已完成且无关当前任务”的子任务结果

小结:动态上下文管理技术通过“提取-压缩-检索-排序”的提示策略,让AI在多任务处理中始终“聚焦关键信息”,避免因上下文过载导致的“失忆”问题。

四、核心技术三:工具集成与调用编排技术——让AI“正确使用工具”解决问题

4.1 为什么工具调用是Agentic AI的“超能力”?

Agentic AI与传统AI的核心区别之一是“能调用工具”:当需要计算复杂数值、爬取实时数据、生成图表或控制硬件时,AI可像人类使用计算器/浏览器一样调用外部工具(API、函数、应用程序)。

但工具调用的“坑”远比想象中多:

  • 不知道用什么工具:让AI写PPT,它可能不知道有“PPT生成API”;
  • 调用参数错误:调用天气API时,把“城市名”写成“经纬度”;
  • 工具返回结果不会处理:拿到API返回的JSON数据,却不知道如何提取关键信息。

工具集成与调用编排技术正是通过提示工程解决这些问题,让AI从“知道工具”到“会用工具”,再到“用对工具”。

4.2 工具调用的“生命周期”与提示设计

一个完整的工具调用流程包含5个阶段,每个阶段都需要特定的提示策略:

阶段1:工具需求识别——“我需要工具吗?”

核心逻辑:引导AI判断当前任务是否需要工具,避免“手算复杂数学题”或“凭空捏造数据”。

提示模板

【角色】工具需求分析师,判断当前任务是否需要调用工具。  
【当前任务】{current_task}  
【判断标准】  
- 需要工具的情况:  
  1. 涉及实时数据(如“获取今天的天气”)  
  2. 需复杂计算(如“计算100个数的平均值”)  
  3. 需特定格式输出(如“生成Excel表格”)  
  4. 需访问外部系统(如“查询数据库”)  
- 无需工具的情况:  
  1. 仅需文本创作(如“写一段总结”)  
  2. 基于现有上下文可回答(如“根据已有数据总结趋势”)  
【输出】  
- 需要工具:是/否  
- 理由:[具体说明]  
- 建议工具类型:[如“计算器”/“天气API”/“数据库查询工具”](若需要)  

【开始判断】  

示例:当前任务是“计算A公司和B公司的市场份额总和”,AI会输出:“需要工具:是;理由:需复杂计算;建议工具类型:计算器”。

阶段2:工具选择——“用哪个工具?”

核心逻辑:当存在多个工具时(如多个天气API),引导AI根据“功能匹配度”“调用成本”“可靠性”选择最优工具。

提示模板

【角色】工具选择专家,从工具库中选择最适合当前任务的工具。  
【当前任务】{current_task}  
【工具库】  
工具1:[名称],功能:[描述],成本:[XX元/次],可靠性:[高/中/低]  
工具2:[名称],功能:[描述],成本:[XX元/次],可靠性:[高/中/低]  
...  
【选择标准】  
1. 功能匹配度:工具是否能完成任务核心需求  
2. 成本:优先选择低成本工具(若预算有限)  
3. 可靠性:优先选择高可靠性工具(若结果重要)  
【输出】  
推荐工具:[工具名称]  
理由:[匹配度+成本+可靠性分析]  

【开始选择】  

示例:工具库有“计算器API(成本0元/次,可靠性高)”和“自定义计算函数(成本0元/次,可靠性中)”,当前任务是“简单加法”,AI会选“计算器API”,理由:“功能完全匹配,成本相同,可靠性更高”。

阶段3:参数生成——“如何调用工具?”

核心逻辑:引导AI生成工具所需的正确参数(如API的输入格式、函数的参数名称和类型),避免因参数错误导致调用失败。

提示模板

【角色】参数生成专家,为工具调用生成正确参数。  
【目标工具】{tool_name}  
【工具参数要求】  
- 参数1:[名称],类型:[如string/int],描述:[必填/选填,格式要求]  
- 参数2:[名称],类型:[如list/object],描述:[必填/选填,格式要求]  
...  
【当前任务】{current_task}  
【输出格式】JSON格式,仅包含工具所需参数,例如:  
{{"参数1": "值1", "参数2": "值2"}}  

【开始生成参数】  

示例:目标工具是“天气API”,参数要求“城市:string(必填,中文名称);日期:string(选填,格式YYYY-MM-DD)”,当前任务是“查询北京2024-06-20的天气”,AI会输出:{"城市": "北京", "日期": "2024-06-20"}

阶段4:调用执行——“执行调用并处理异常”

核心逻辑:引导AI执行工具调用,并处理可能的错误(如网络超时、参数错误、权限不足)。

提示模板

【角色】工具调用执行者,执行工具调用并处理异常。  
【工具名称】{tool_name}  
【调用参数】{parameters}(JSON格式)  
【执行步骤】  
1. 按参数调用工具,获取返回结果。  
2. 检查返回结果是否包含错误信息:  
   - 若成功:提取有用信息,进入“结果处理”阶段。  
   - 若失败:分析错误类型(参数错误/网络错误/权限错误),并生成修正方案(如“修正参数X为Y”/“重试调用”/“更换工具”)。  
【输出】  
调用状态:成功/失败  
结果/错误信息:[工具返回结果或错误描述]  
下一步行动:[提取信息/修正参数重试/更换工具]  

【开始执行】  
阶段5:结果处理与整合——“如何用工具结果完成任务?”

核心逻辑:引导AI解析工具返回的原始结果(如JSON、CSV),提取关键信息并整合到任务成果中。

提示模板

【角色】结果处理专家,解析工具返回结果并整合到任务中。  
【工具返回结果】{raw_result}(如JSON/文本)  
【当前任务需求】{task_requirement}(如“生成包含天气数据的报告段落”)  
【处理步骤】  
1. 解析原始结果,提取与任务相关的关键信息(如数值、状态描述)。  
2. 将关键信息转化为自然语言或所需格式(如表格、图表)。  
3. 整合到任务成果中,确保逻辑连贯。  
【输出】整合后的任务成果片段:[内容]  

【开始处理】  

示例:工具返回结果是{"天气": "晴", "温度": 28, "风力": "3级"},任务需求是“写一段天气播报”,AI会输出:“今天北京天气晴朗,气温28摄氏度,风力3级,适合户外活动。”

4.3 代码实战:工具调用Agent(以调用天气API为例)

下面用OpenAI的Function Calling功能结合提示模板,实现一个能调用天气API的Agent。

步骤1:定义工具(天气API)和函数描述
import requests  

# 模拟天气API(实际项目中替换为真实API)  
def get_weather(city: str, date: str) -> dict:  
    """  
    获取指定城市和日期的天气信息。  
    参数:  
        city: 城市名称(中文,如“北京”)  
        date: 日期(格式YYYY-MM-DD,如“2024-06-20”,默认今天)  
    返回:  
        dict: 包含天气、温度、风力的字典  
    """  
    # 模拟API返回  
    return {  
        "city": city,  
        "date": date,  
        "weather": "晴",  
        "temperature": 28,  
        "wind": "3级"  
    }  

# 定义工具函数描述(遵循OpenAI Function Calling格式)  
tools = [  
    {  
        "type": "function",  
        "function": {  
            "name": "get_weather",  
            "description": "获取指定城市和日期的天气信息",  
            "parameters": {  
                "type": "object",  
                "properties": {  
                    "city": {  
                        "type": "string",  
                        "description": "城市名称(中文,如“北京”)"  
                    },  
                    "date": {  
                        "type": "string",  
                        "description": "日期(格式YYYY-MM-DD,如“2024-06-20”,默认今天)"  
                    }  
                },  
                "required": ["city"]  # city为必填参数,date可选  
            }  
        }  
    }  
]  
步骤2:实现工具调用流程
from openai import OpenAI  
client = OpenAI()  

def agent_with_tool(task: str):  
    # 阶段1:工具需求识别  
    need_tool_prompt = f"""  
    【角色】工具需求分析师,判断当前任务是否需要调用工具。  
    【当前任务】{task}  
    【判断标准】...(省略,见4.2阶段1模板)  
    【输出】需要工具:是/否;建议工具类型:...  
    """  
    need_tool_response = client.chat.completions.create(  
        model="gpt-4o",  
        messages=[{"role": "user", "content": need_tool_prompt}]  
    ).choices[0].message.content  

    if "需要工具:是" not in need_tool_response:  
        return f"无需工具,直接完成任务:{task}"  

    # 阶段2-5:工具选择、参数生成、调用执行、结果处理(合并为Function Calling流程)  
    response = client.chat.completions.create(  
        model="gpt-4o",  
        messages=[  
            {"role": "user", "content": task},  
            {"role": "system", "content": "你有调用工具的能力,请根据任务需求调用合适的工具。"}  
        ],  
        tools=tools,  
        tool_choice="auto"  # 自动选择工具  
    )  

    # 处理工具调用结果  
    if response.choices[0].message.tool_calls:  
        tool_call = response.choices[0].message.tool_calls[0]  
        function_name = tool_call.function.name  
        function_args = eval(tool_call.function.arguments)  # 解析参数  

        # 执行工具函数  
        if function_name == "get_weather":  
            weather_result = get_weather(**function_args)  

            # 阶段5:结果处理  
            process_prompt = f"""  
            【角色】结果处理专家,将天气数据整合成播报。  
            【工具返回结果】{weather_result}  
            【任务需求】{task}  
            【输出】天气播报文本  
            """  
            final_result = client.chat.completions.create(  
                model="gpt-4o",  
                messages=[{"role": "user", "content": process_prompt}]  
            ).choices[0].message.content  
            return final_result  

# 测试:调用Agent获取北京天气  
result = agent_with_tool("查询北京2024-06-20的天气,并生成一段天气播报")  
print(result)  
输出示例
今天北京天气晴朗,气温28摄氏度,风力3级,适合户外活动。紫外线强度中等,请注意防晒。  

4.4 常见问题与解决方案

问题原因解决方案
不调用工具而尝试“捏造数据”工具需求识别提示中“需要工具的情况”描述不清晰加入具体示例:“例如‘查询天气’必须调用天气API,不可虚构”
参数格式错误(如日期格式不对)参数生成提示未强调格式要求在参数模板中加入“格式示例”,如“日期格式必须为YYYY-MM-DD,例如‘2024-06-20’”
工具返回错误未处理(如API超时)执行阶段未考虑异常情况在提示中加入“异常处理示例”:“若返回‘超时’,则输出‘调用失败,建议重试’”

小结:工具集成与调用编排技术通过“需求识别-工具选择-参数生成-执行-结果处理”的全流程提示设计,让AI从“知道工具”进化为“熟练使用工具”的“数字助手”,大幅扩展多任务处理能力。

五、核心技术四:反馈驱动的迭代优化技术——让AI“从错误中学习”并持续改进

5.1 为什么“一次做对”对Agentic AI来说很难?

即使是最聪明的Agent,在处理多任务时也难免出错:子任务优先级排错、工具调用参数错误、数据解读偏差……传统AI会“一条道走到黑”,而Agentic AI的关键优势是“能接收反馈并修正”——这就是反馈驱动的迭代优化技术要实现的目标。

反馈可以来自3个方向:

  • 用户反馈:用户直接指出错误(如“数据算错了”);
  • 工具反馈:工具返回错误信息(如“API参数错误”);
  • 自我反馈:AI自查发现问题(如“子任务结果与目标不符”)。

通过提示工程引导AI“接收反馈→分析原因→制定修正方案→重新执行”,形成“执行-反馈-优化”的闭环,让AI像“实习生”一样在错误中成长。

5.2 反馈处理的“3层迭代模型”与提示设计

根据反馈来源和错误严重程度,反馈处理可分为3层迭代,每层对应不同的提示策略:

第1层:即时修正迭代——“立刻改这个错!”

适用场景:明确的、局部的错误(如“数值算错”“错别字”),无需重新规划整体任务。

提示模板

【角色】即时修正专家,根据用户反馈修正当前结果。  
【当前结果】{current_result}  
【用户反馈】{user_feedback}(如“温度应该是28度,不是38度”)  
【修正要求】  
1. 仅修改反馈指出的错误部分,不改变其他内容。  
2. 说明修正原因:[原因]  
3. 输出修正后的结果。  
【输出格式】  
修正原因:[原因]  
修正后结果:[内容]  

【开始修正】  

示例:当前结果是“今天气温38度”,用户反馈“温度应该是28度”,AI会输出:“修正原因:用户指出温度数值错误;修正后结果:今天气温28度。”

第2层:子任务重规划迭代——“这个子任务需要重做!”

适用场景:错误源于子任务执行不当(如“数据收集不完整”“工具调用错误”),需要重新执行单个或多个子任务。

提示模板

【角色】子任务重规划专家,根据反馈重新规划子任务。  
【原任务计划】{original_plan}(子任务列表)  
【已完成子任务】{completed_tasks}  
【错误反馈】{error_feedback}(如“子任务2.1收集的数据不完整,缺少B公司信息”)  
【重规划步骤】  
1. 确定需要重做的子任务:[子任务ID]  
2. 分析错误原因:[如“未明确要求收集所有竞品数据”]  
3. 制定修正方案:[如“修改子任务2.1的收集标准,包含所有3个竞品”]  
4. 更新子任务计划,标注依赖关系。  
【输出格式】  
需重做的子任务:[ID]  
错误原因:[分析]  
修正方案:[方案]  
更新后子任务计划:[新的子任务列表]  

【开始重规划】  
第3层:目标与策略迭代——“方向错了,需要换思路!”

适用场景:根本性错误(如“误解用户目标”“整体方法不可行”),需要重新定义目标或更换策略。

提示模板

【角色】目标与策略迭代专家,根据反馈调整整体方向。  
【原目标】{original_goal}  
【原执行策略】{original_strategy}(如“通过爬虫收集数据”)  
【反馈信息】{feedback}(如“用户实际需要的是内部数据,不可爬取外部信息”)  
【迭代步骤】  
1. 重新理解用户真实目标:[新目标]  
2. 评估原策略是否可行:[可行/不可行,理由]  
3. 制定新策略:[如“调用内部数据库API”]  
4. 重新拆解子任务计划。  
【输出格式】  
新目标:[目标]  
新策略:[策略]  
新子任务计划:[列表]  

【开始迭代】  

5.3 自我反馈提示:让AI“自己检查错误”

除了外部反馈,Agentic AI还需具备“自我反馈”能力——在执行每个子任务后,主动检查结果是否符合预期。

自我反馈提示模板

【角色】自我检查专家,评估子任务结果是否符合要求。  
【子任务目标】{subtask_goal}(如“收集3个竞品的市场份额”)  
【子任务结果】{subtask_result}  
【检查标准】  
1. 完整性:是否覆盖目标的所有要求(如“是否包含3个竞品”)  
2. 准确性:数据是否合理(如“市场份额是否在0-100%范围内”)  
3. 相关性:是否与整体任务相关(如“是否是市场份额而非营收数据”)  
【输出】  
检查结果:通过/不通过  
问题点(若不通过):[1. ... 2. ...]  
修正建议:[重新收集XX数据/修正XX数值]  

【开始检查】  

示例:子任务目标是“收集3个竞品的市场份额”,结果只包含2个,AI会输出:“检查结果:不通过;问题点:1. 完整性不足,仅收集2个竞品;修正建议:重新执行子任务,补充第3个竞品数据。”

5.4 代码实战:反馈驱动迭代Agent

下面实现一个能接收用户反馈并修正结果的迭代Agent。

def feedback_iteration_agent(original_result, user_feedback):  
    # 第1层:即时修正迭代  
    if "数值错误" in user_feedback or "错别字" in user_feedback:  
        correction_prompt = f"""  
        【角色】即时修正专家,根据用户反馈修正当前结果。  
        【当前结果】{original_result}  
        【用户反馈】{user_feedback}  
        【输出格式】修正原因:...;修正后结果
### 什么是代理型AI (Agentic AI) 代理型AI,即Agentic AI,在特定环境下能够自主操作并作出决策的人工智能实体。这种类型的AI旨在模仿人类或其他生物体的行为模式,能够在复杂的、不确定的环境中独立运作,并根据环境变化调整行为策略[^2]。 代理型AI具备高度自治能力,可以代表用户执行各种任务,从简单的自动化流程到更为复杂的交互过程。这类系统不仅限于软件层面的应用,还包括物理世界的设备控制,如自动驾驶车辆或是家庭内的智能装置管理等[^3]。 ### Agentic AI的特点 - **自主性**:无需持续人为干预即可完成指定工作; - **适应力强**:能快速响应外界条件的变化而改变行动计划; - **学习能力强**:借助机器学习算法不断优化自身的性能表现; - **多模态感知**:综合利用视觉、听觉等多种感官输入来进行判断与决策; ### 应用实例 #### 自动驾驶汽车 通过融合来自摄像头、雷达等多个传感器的数据流,实时监测周围情况,规划最优行驶路线,确保旅途的安全性和效率最大化[^4]。 ```python def process_sensor_data(sensor_inputs): """ 处理来自多个传感器的数据以决定下一步动作. 参数: sensor_inputs (dict): 不同类型传感器收集的信息集合 返回值: action_plan (str): 下一步应该采取的动作描述字符串 """ pass ``` #### 客户服务机器人 在电子商务平台或金融机构中充当全天候客服人员角色,解答顾客疑问、解决常见问题以及提供建议和支持,从而改善整体服务质量。 ```json { "customer_query": "如何申请信用卡?", "response_options": [ {"text":"您可以访问我们的官方网站填写在线表格"}, {"text":"拨打官方热线电话获取帮助"} ] } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值