Actor Critic算法

Actor Critic算法结合Policy Gradient的演员网络与Function Approximation的评判家网络,演员执行动作,评判家对其打分,通过评分反馈优化演员的行为策略。应用于钟摆游戏的连续动作和小车立杆游戏的离散动作场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Actor Critic(直译为演员评判家算法,易理解):

结合两个网络:演员网络Policy Gradient (Actor)+ 评判家网络Function Approximation (Critic), 演员Actor 基于概率表演动作行为, 评判家Critic 基于演员Actor 的行为进行评论打分, 演员Actor 根据评判家Critic 的评分改进表演行为的概率。

钟摆游戏的动作是一个连续值:

演员网络:

评判家网络:

import tensorflow as tf
import numpy as np
import gym

np.random.seed(2)
tf.set_random_seed(2)

class Actor(object):
    def __init__(self,sess,n_features,action_bound,lr=0.0001):
        self.sess =sess
        self.s = tf.placeholder(tf.f
<think>好的,我现在需要帮助用户解决如何在Matlab中手动实现Actor-Critic算法的问题。用户明确提到要“不依赖工具箱”和“从零开始”,所以首先我需要确定Matlab中哪些工具箱通常用于强化学习,比如Reinforcement Learning Toolbox,然后想办法避开这些工具箱。 用户给的引用里有提到Matlab2022b支持相关函数,但用户希望手动实现,这意味着可能需要使用基础的Matlab功能,比如矩阵运算和自定义函数。接下来,我需要回忆Actor-Critic算法的基本原理。Actor负责生成动作,Critic评估状态的价值,两者通过策略梯度方法更新。关键点在于如何设计网络结构、更新策略和价值函数。 接下来考虑示例代码的结构。可能需要定义状态空间、动作空间,初始化ActorCritic的参数。比如,使用线性模型或者简单的神经网络结构,但不用现成的工具箱函数。然后实现策略的选择,比如基于高斯分布的动作选择,再根据奖励更新参数。 需要确保代码步骤清晰,包括环境交互、奖励计算、参数更新。参数更新部分,Actor使用策略梯度,Critic使用TD误差。可能要用到随机梯度下降。同时要注意Matlab的语法,比如矩阵乘法和转置的正确使用。 用户可能遇到的问题包括如何表示策略和价值函数,如何处理连续动作空间,以及如何调试算法。所以在回答中需要解释每个部分的作用,并给出注释详细的代码。此外,用户可能需要知道如何调整学习率、折扣因子等超参数,因此在代码示例中应该包含这些参数,并说明它们的影响。 最后,生成的相关问题需要围绕实现中的难点、参数调整和应用场景展开,确保用户能进一步深入学习。同时,引用提供的资料中有关于Actor-Critic控制器的内容,可以适当引用,增强回答的可信度。</think>在MATLAB中手动实现Actor-Critic算法需要理解其核心结构和参数更新机制。以下是分步骤实现方案: ### 一、Actor-Critic算法原理 Actor网络负责策略生成,Critic网络评估状态价值[^3]。更新公式: $$ \delta = r + \gamma V(s') - V(s) $$ $$ \theta_{actor} \leftarrow \theta_{actor} + \alpha \nabla_\theta \log \pi(a|s) \delta $$ $$ \theta_{critic} \leftarrow \theta_{critic} + \beta \delta \nabla_\theta V(s) $$ ### 二、MATLAB实现步骤 #### 1. 环境定义 ```matlab % 定义连续状态和动作空间 state_dim = 3; % 状态维度 action_dim = 1; % 动作维度 max_action = 2; % 最大动作值 ``` #### 2. 网络参数初始化 ```matlab % Actor参数(策略网络) actor_weights = 0.1*randn(state_dim, action_dim); actor_bias = zeros(1, action_dim); % Critic参数(价值网络) critic_weights = 0.1*randn(state_dim, 1); critic_bias = 0; % 超参数设置 alpha = 0.001; % Actor学习率 beta = 0.002; % Critic学习率 gamma = 0.99; % 折扣因子 ``` #### 3. 策略选择函数 ```matlab function action = choose_action(state, actor_weights, actor_bias) mean_action = state * actor_weights + actor_bias; action = mean_action + randn()*0.1; % 添加探索噪声 action = max(min(action, max_action), -max_action); end ``` #### 4. 值函数估计 ```matlab function value = estimate_value(state, critic_weights, critic_bias) value = state * critic_weights + critic_bias; end ``` #### 5. 参数更新过程 ```matlab for episode = 1:1000 state = env_reset(); % 自定义环境初始化函数 while ~done % 生成动作 action = choose_action(state, actor_weights, actor_bias); % 与环境交互 [next_state, reward, done] = env_step(action); % 自定义环境函数 % Critic更新 current_value = estimate_value(state, critic_weights, critic_bias); next_value = estimate_value(next_state, critic_weights, critic_bias); td_error = reward + gamma*next_value - current_value; critic_weights = critic_weights + beta * td_error * state'; critic_bias = critic_bias + beta * td_error; % Actor更新 policy_gradient = (action - (state*actor_weights + actor_bias)) / 0.1^2; actor_weights = actor_weights + alpha * td_error * state' * policy_gradient; actor_bias = actor_bias + alpha * td_error * policy_gradient; state = next_state; end end ``` ### 三、关键实现细节 1. **探索机制**:通过添加高斯噪声实现$\epsilon$-greedy策略 2. **网络结构**:使用线性模型代替神经网络,避免工具箱依赖 3. **梯度计算**:手动推导策略梯度公式[^3] 4. **数值稳定性**:对动作进行边界约束
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值