GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(三)

本文深入解析GPT-3的内部机制,包括无监督预训练过程、模型参数变化、上下文窗口处理以及Transformer解码层的作用。强调了GPT模型的预测核心,并指出在严肃应用中需要人工干预和领域专家的参与。此外,介绍了微调模型以提升特定任务性能的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(三)

5.3 GPT-3 内幕机制可视化解析
GPT-3是一个基于Transformer的语言模型,通过不同的层次提取语言不同层面的特性,构建整个语言的语义信息,它学习的过程跟人类正常学习的过程是类似的,开始的时候是一个无监督预训练,如图5-5所示,GPT-3模型可以将网络上的所有文档下载下来,包含 3000 亿个文本标记的数据集用于生成模型的训练示例,通过遮住下一个词的方式来训练模型,然后进行预测,如果模型的预测是正确的,那么这是一个很好的结果;如果预测不正确,可以通过误差来调整模型。
在这里插入图片描述

图5- 5无监督预训练
如图5-6所示,GPT-3 是一个大模型,使用1750 亿个参数,未经训练的模型以随机参数开始,从最原始的没有经过训练的GPT-3模型,通过一个无监督预训练的过程,形成一个新的网络,网络本身还是基于Transformer的解码器,但是这里面的参数已经做出了改变,从图中的颜色对比可以看出参数发生的一些变化,这只是第一个步骤,但是已经导致它本身非常强大了。
在这里插入图片描述

图5- 6 GPT-3模型的无监督预训练
GPT系列或者ChatGPT是一种基于人工智能的自然语言处理技术,其最根本的机制是预测下一个词

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值