CoT及ReAct解密与实战(三)

本文介绍了ReAct方法在大语言模型中的应用,通过对比零样本思维链(Zero-shot-CoT)和计划解决(Plan and Solve)方式,展示了如何通过计划和执行解耦合来提高多步推理的准确性。通过具体示例,阐述了如何利用计划器(BasePlanner和LLMPlanner)和执行器来实现这一过程,强调了高质量提示词在引导模型执行任务中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第8章 CoT及ReAct解密与实战
8.5 ReAct及计划和执行案例实战
我们来看一下LangChain的官方文档,首先它很简单的说了一下,计划和执行代理(Plan and execute agents)首先计划要做什么,然后执行子任务来实现目标,言外之意ReAct不是这样的,我们在ReAct中看见的内容是,有一步具体的步骤,然后执行一个行动,然后再有一步具体的步骤,然后再执行一个具体的行动。在计划和执行代理中,计划和执行这两者确实配合在一起,但它把计划和执行解耦合了,先给一个链条,然后基于这个链条,再执行具体的子任务,读者可以看一下论文:“Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models”。
如图8-6所示,是一个具体的例子,这是最直接的方式。
在这里插入图片描述

图8- 6计划和执行代理示例
上图对零样本思维链(Zero-shot-CoT)方式和计划和解决(Plan and Solve)方式进行了对比。零样本思维链方式,使用大模型以“让我们一步一步地思考”的方式进行多步推理,但当问题比较复杂时,仍然可能产生错误的推理步骤。与零样本思维链方式不同,计划和解决方式首先要求大模型设计一个解决问题的计划,通过生成一个循序渐进的步骤计划,并执行该计划来找到答案。
 零样本思维链(Zero-shot-CoT)方式的示例:
问题(Question):在一个20人的舞蹈班中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值