解决量化模型中的 NaN 问题:为何非量化层应选用 FP32?(41)

“等一下,为什么我们的量化模型中会有torch.float16参数呢?”

实际上,量化并不会应用到模型的每一层。只有少数经过精心挑选的层——你可以称之为“天选之层”——会被量化。当然,我是在开玩笑:量化的天然目标是解码器块内部那些庞大的线性层。这些层构成了模型参数的绝大部分,因此我们只需关注这些层,就能显著减小模型大小。

“好吧,但非量化层默认不应该是torch.float32吗?”

问得好!你可能会这么认为,毕竟FP32是默认的数据类型,对吧?然而,加载量化模型时会默认将其改为FP16,除非你主动指定torch_dtype参数。

“那我应该指定它吗?应该使用什么数据类型呢?”

是的,你或许应该指定,而且使用torch.float32可能是最佳选择。为了理解原因,让我们看看如果不指定会发生什么情况,也就是说,如果像上面的model_q8那样将非量化层保留为torch.float16的话:

out = model_q8(**batch)
out.loss

运行结果:

tensor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值