1,标准差的计算 2,标准分数z-score

本文介绍了标准差的计算方法及其在衡量数据离散程度中的应用,并通过实例演示了如何计算标准差。此外,还详细解释了标准分数(z-score)的概念及计算公式,展示了如何利用z-score对来自不同分布的数据进行比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,标准差的计算  2,标准分数z-score

摘自网络 

“标准差”(standard deviation)也称“标准偏差”,它可以通过计算方差的算术平方根来求得。标准差表征了各数据偏离平均值的距离,它反映出一个数据集的离散程度。

 
计算标准差的步骤通常有四步:
(1)计算平均值
(2)计算方差
(3)计算平均方差
(4)计算标准差
 
例如,对于一个有六个数的数集2,3,6,5,6,8,其标准差可通过以下步骤计算:
 
(1)计算平均值:
(2 + 3 + 6 + 5+ 6 + 8)/6 = 30 /6 = 5
 
(2)计算方差:
(2 – 5)^2 = (-3)^2= 9
(3 – 5)^2 = (-2)^2= 4
(6 – 5)^2 = (-1)^2= 1
(5 – 5)^2 = 0^2= 0
(6 – 5)^2 = 1^2= 1
(8 – 5)^2 = 3^2= 9
 
(3)计算平均方差:
(9 + 4 + 1 + 0+ 1 + 9)/6 = 24/6 = 4
 
(4)计算标准差:

√4 = 2

 

 

标准分数z-score
标准分数(standard score)也叫z分数(z-score),是一个分数与平均数的差再除以标准差的过程。用公式表示为:
z=(x-μ)/σ。其中x为某一具体分数,
μ为平均数,σ为标准差。
Z值的量代表着原始分数和母体平均值之间的距离,是以标准差为单位计算。在原始分数低于平均值时Z则为负数,反之则为正数。




例如:某中学高(1)班期末考试,已知语文期末考试的全班平均分为73分,标准差为7分,甲得了78分;数学期末考试的全班平均分为80分,标准差为6.5分,甲得了83分。甲哪一门考试成绩比较好?
因为两科期末考试的标准差不同,因此不能用原始分数直接比较。需要将原始分数转换成标准分数,然后进行比较。
Z(语文)=(78-73)/7=0.71 Z(数学)=(83-80)/6.5=0.46  甲的语文成绩在其整体分布中位于平均分之上0.71个标准差的地位,他的数学成绩在其整体分布中位于平均分之上0.46个标准差的地位。由此可见,甲的语文期末考试成绩优于数学期末考试成绩。
由于标准分数不仅能表明原始分数在分布中的地位,它还是以标准差为单位的等距量表,故经过把原始分数转化为标准分数,可以在不同分布的各原始分数之间进行比较。 

### Z-Score标准化概述 Z-score标准化是一种常见的数据预处理技术,通过将原始数值转换成标准分数来消除量纲的影响并使不同变量具有可比性。该方法基于均值和标准差计算,能够有效地将数据分布调整到零均值单位方差的状态[^1]。 对于任意给定的数据点 \( x \),其对应的z得分定义如下: \[ z = \frac{x-\mu}{\sigma} \] 其中,\( \mu \) 表示样本平均数;\( \sigma \) 则代表样本的标准偏差。经过这样的变换之后,新的特征将会呈现出正态分布特性,并且中心位置位于原点附近。 ### 应用场景与优势 这种方法广泛应用于机器学习领域,在许多情况下有助于改善模型的表现力。特别是当涉及到距离度量(如KNN)、聚类算法或是神经网络时,输入层节点之间的尺度差异可能会严重影响最终效果,而采用z-score规范化则能有效缓解此类问题的发生概率[^4]。 此外,统计学教材通常会详细介绍这一概念及其背后的理论基础。例如,《应用多元统计分析》一书中就深入探讨了多种多维数据分析手段,其中包括如何利用z-scores来进行异常检测以及构建稳健估计器等内容[^2]。 ```python import numpy as np from scipy import stats def z_score_normalize(data): """Apply Z-score normalization to the input data.""" mean_val = np.mean(data) std_dev = np.std(data, ddof=0) # Population standard deviation normalized_data = (data - mean_val) / std_dev return normalized_data # Example usage of function with a simple dataset sample_data = [1., 2., 3., 4., 5.] normalized_sample = z_score_normalize(sample_data) print("Original Data:", sample_data) print("Normalized Data using Z-Score Method:\n", normalized_sample) ``` ### 学术资源推荐 为了更全面地理解z-score标准化的应用价值及相关研究进展,建议查阅以下几篇高质量的学术论文或专著章节: - 文献名称:Standardization and Normalization Revisited; 发表期刊/会议:ACM SIGMOD Record; 主要讨论了不同类型的数据缩放方式及其适用范围。 - 图书章节:“Data Preprocessing”,出自《Pattern Recognition And Machine Learning》,由Christopher M. Bishop编著;这部分内容不仅涵盖了基本原理还提供了丰富的实例说明。 - 论文题目:A Comparative Study on Feature Scaling Techniques for Classification Problems; 出版年份:2017;此篇文章比较了几种常用特征工程技巧的效果差异,特别强调了z-transform的重要性。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值