- 博客(2193)
- 资源 (39)
- 收藏
- 关注

原创 2025年重磅喜讯!热烈祝贺Gavin大咖大模型领域经典著作《Transformer& Rasa 解密 原理、 源码及案例 》 北京航空航天大学出版社发行上市!
自2016年3月,阿尔法狗战胜人类围棋高手以来,人工智能技术取得了空前的成就,引领着人类社会进入了一个全新的时代。2017年7月,国务院正式发布了《新一代人工智能发展规划》,将人工智能发展明确为国家战略,为我国在这一领域的发展指明了方向。2023年2月,国务院发布了《数字中国建设整体布局规划》,提出到2025年,我们将基本形成横向打通、纵向贯通、协调有力的一体化推进格局,数字中国建设取得重要进展。到2035年,我们的数字化发展水平将进入世界前列,数字中国建设取得重大成就。
2025-01-26 19:00:00
1740
7

原创 2024年重磅喜讯!热烈祝贺Gavin大咖大模型领域经典著作《Transformer&ChatGPT解密:原理、源码及案例》 北京航空航天大学出版社发行上市!
2024年重磅喜讯!热烈祝贺Gavin大咖大模型领域经典著作《Transformer&ChatGPT解密:原理、源码及案例》 北京航空航天大学出版社发行上市!
2024-06-09 10:42:22
508
4

原创 2020年重磅喜讯!热烈祝贺王家林大咖人工智能及大数据领域经典著作《Apache Spark+AI全息代码解密》清华大学出版社发行上市!
2020年重磅喜讯!热烈祝贺王家林大咖人工智能及大数据领域经典著作《Apache Spark+AI全息代码解密》清华大学出版社发行上市!目录全息代码解密编辑推荐内容简介作者简介本书目录前言新书链接全息代码解密Apache Spark+AI全息代码解密(京东套装共2册)你需要的Apache Spark和AI技能都在这里!全程案例驱动无痛学习,动手创造自己AI框架,解密Alluxio, 抽丝剥茧学习Spark内核所有关键源码及实践优化的一切秘密https://item.jd.com/1302908
2020-12-12 09:52:10
1470
8

原创 2020年重磅喜讯!热烈祝贺王家林大咖人工智能领域经典著作《企业级AI技术内幕:深度学习框架开发+机器学习案例实战+Alluxio解密》 清华大学出版社发行上市!
2020年重磅喜讯!热烈祝贺王家林大咖人工智能领域经典著作《企业级AI技术内幕:深度学习框架开发+机器学习案例实战+Alluxio解密》 清华大学出版社发行上市!目录大咖心声新书图片内容简介作者简介目录前言/序言新书案例案例一:自研盘古人工智能框架案例二:基于Pytorch的自然语言处理模型(BERT)的应用案例案例三:人力资源主管正确评估新招聘员工薪水的案例案例四: 基于Alluxio+Pytorch的深度学习案例案例五:Spark+AI实战案例新书网购链接新书资讯大咖心声数据象征空间AI代理时间
2020-10-31 08:54:56
2687
2

原创 2020年重磅喜讯!热烈祝贺王家林大咖大数据经典传奇著作《Spark大数据商业实战三部曲》 畅销书籍第二版 清华大学出版社发行上市! 前浪致 Spark + AI 后浪
王家林大咖清华大学新书Spark第二版已上市:致 Spark + AI 初学者前言新书介绍编辑推荐内容简介作者简介精彩章节新书目录第二版前言第一版前言Spark+AI学习路径献给Spark+AI的“后浪”新书案例讲解第二版网购链接新书资讯前言欢迎来到清华大学出版社《Spark 大数据商业实战三部曲:内核解密|商业案例|性能调优(第2 版)》新书博客!关注到Spark新书发布的每一位同学,应该是学习了很多大数据的基础知识,学习了很多人工智能的技术资料,正在寻求进一步的自我成长。在学习过程中,一定是遇到了很
2020-05-25 11:08:23
2058
1

原创 2020年重磅喜讯!热烈祝贺王家林大咖大数据经典传奇著作《Spark大数据商业实战三部曲》 畅销书籍第二版 清华大学出版社发行上市!
《Spark大数据商业实战三部曲》第二版购书链接:https://item.jd.com/12864870.html
2020-05-22 16:27:07
1378
3

原创 2018年新春报喜!热烈祝贺王家林大咖大数据经典传奇著作《SPARK大数据商业实战三部曲》 畅销书籍 清华大学出版社发行上市!
2018年新春报喜!热烈祝贺王家林大咖大数据经典传奇著作《SPARK大数据商业实战三部曲》畅销书籍 清华大学出版社发行上市!本书基于Spark 2.2.0新版本,以Spark商业案例实战和Spark在生产环境下几乎所有类型的性能调优为核心,以Spark内核解密为基石,分为上篇、中篇、下篇,对企业生产环境下的Spark商业案例与性能调优抽丝剥茧地进行剖析。上篇基于Spark源码,从一个动手...
2018-02-13 19:47:15
7370
3
原创 LoRA适配器管理(66)
我们可以为同一个基础模型添加多个适配器,随后通过按名称设置激活的适配器,按需在不同适配器之间切换。get_peft_model()函数的输出结果是PeftModel类的一个实例,该实例实现了多种方法,包括加载(load)、添加(add)、列出(list)适配器以及设置激活的适配器(set active adapters),同时还提供了一个上下文管理器,可用于临时禁用适配器。下面我们来试用这些方法。
2025-09-01 19:00:00
10
原创 查看LoRA 哪个适配器处于激活状态(67)
当前哪个适配器处于激活状态?我们来查看active_adapter属性就知道了输出'default'
2025-09-01 19:00:00
126
原创 LoRA unmerge_adapter unload 方法(68)
将适配器合并到量化模型时会出现警告,因误差可能导致输出差异。正确做法是先加载常规基础模型后再合并适配器。合并多个适配器需精心设计,可使模型响应不同提示词。合并后适配器仍保留,可通过unmerge_adapter()恢复原始状态,或使用merge_and_unload()彻底合并。若要完全移除适配器,调用unload()方法即可。这些操作涉及模型权重恢复和文件清理,需谨慎处理。
2025-09-01 19:00:00
148
原创 大型语言模型微调 内容预告(69)
下面的基础配置在大多数情况下都能很好地运行。r=16,秩(rank)的常见取值为 8、16 或 32,但使用更大的数值通常不会对模型的内存占用量产生显著影响。缩放因子(lora_alpha)的取值通常是秩(rank)的两倍。如果你的模型包含 Conv1D 层(一维卷积层),需在配置中添加fan_in_fan_out=True参数。如果你的模型是近期发布的版本,可能需要手动指定target_modules(目标模块):默认情况下,只有适配器(adapter)是可训练的。
2025-09-01 19:00:00
24
原创 LoraConfig target modules加入embed_tokens(64)
若模型的 tie_word_embeddings 参数设为 True(即词嵌入层与输出层权重绑定),且 tied_target_modules(绑定目标模块列表)中包含 lm_head(语言模型头部,负责最终文本生成或预测的组件),同时该头部又属于适配器(adapter)的一部分,这种配置可能会引发问题。正如我们会在下一节课中详细讲到的,你可能会新增的这些特殊 tokens,大多是用于引导模型行为的提示信息(hints),而且它们基本都属于输入的一部分 —— 而输入正是由(经过适配的)嵌入层来处理的。
2025-08-29 19:00:00
89
原创 LoRA三种不同训练流程在配置和保存权重的差异(65)
PEFT会使用 get_peft_model_state_dict() 工具函数构建一个字典,该字典仅包含必须保存的层和模块:适配器(adapters)、需保存模块列表(modules_to_save 中的内容),以及调整过大小的嵌入层(无论其是否在需保存模块列表中)。不过,第三组输出虽然已将嵌入层及与其绑定的模型头部(正如我们在第 2 节课中讨论过的那样)保存到磁盘,但这一信息并未体现在已保存的配置中。前两组输出完全符合预期:配置与保存的权重相互匹配。
2025-08-29 19:00:00
194
原创 PEFT的q_proj层、v_proj层LoRA适配器解析(60)
本文解析了PEFT模型中q_proj和v_proj层的LoRA适配器设置。在OPT架构中,这两个投影层被自动配置了适配器,无需手动指定。具体来看,修改后的q_proj层包含基础线性层和LoRA组件:LoRA_A(1024→8维)、LoRA_B(8→1024维)以及0.05概率的dropout层。这种结构通过低秩分解实现参数高效微调,在保持原模型性能的同时显著减少可训练参数。
2025-08-28 19:00:00
31
原创 LoRA模型的可训练参数解析(61)
get_peft_model()函数会将原始的 4 位量化线性层(Linear4bit)包装为其对应的 LoRA 版本(lora.Linear4bit)。可训练参数均来自所附加的适配器(adapters):即我们在本节前面部分讨论过的 A 层(命名为 lora_A)和 B 层(命名为 lora_B)。可以调用一个非常便捷的方法来查看:既能了解可训练参数的具体数量,也能知晓其占模型总参数的百分比。好消息是,你可以自主选择要解冻哪些层(例如,层归一化层、嵌入层、输出头层)。有个好消息和坏消息要告诉你。
2025-08-28 19:00:00
23
原创 LoRA modules_to_save解析及卸载适配器(62)
摘要 本文解析了LoRA微调中的modules_to_save参数,该参数通过正则匹配指定需保持可训练的模型层(如"layer_norm")。同时介绍了PEFT模型中适配器的卸载方法,建议通过unload()清除现有适配器后再应用新配置。示例显示添加层归一化参数约增加10万个可训练参数,占比较小。文章最后建议还可将嵌入层(Embeddings)加入需保存模块列表。核心强调配置应应用于全新模型,避免多次调用导致的配置混淆问题。
2025-08-28 19:00:00
189
原创 LoRA加入嵌入层、及输出头解析(63)
本文探讨了LoRA(低秩自适应)方法在嵌入层和输出头的应用。通过将嵌入层加入modules_to_save列表,可显著提升模型学习新token的能力,但会导致训练参数增加约2600万个(占总参数7%)。值得注意的是,嵌入层与输出头共享权重,因此只需保存嵌入层即可。文章还提出更优方案:将嵌入层作为目标模块附加适配器,既能保持性能又可降低训练成本。配置代码示例展示了具体参数设置方法,包括秩(r)、alpha值和dropout率等关键参数。
2025-08-28 19:00:00
357
原创 如何确定哪些层应添加适配器(Adapter)?(58)
适配器添加机制解析:主流模型会预配置目标层列表,适配器可应用于这些层(无论是否量化)。实际上,任何线性层或一维卷积层都可添加适配器,需注意:1)新模型可能需要手动指定target_modules参数;2)一维卷积层需设置fan_in_fan_out为True。可通过TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING查询已支持的模型架构,未支持的模型需自行配置目标模块名称。
2025-08-26 19:00:00
238
原创 PEFT 模型解析(59)
本文介绍了如何使用PEFT(参数高效微调)技术中的LoRA方法修改模型。通过调用get_peft_model()函数,将预处理好的基础模型与LoRA配置结合,即可创建适配器模型。示例中展示了LoRA配置参数(r=8、alpha=16等)和生成的PeftModelForCausalLM模型结构,其中标记了量化层和LoRA适配器位置。这种方法既可通过SFTTrainer自动完成,也可手动操作以深入理解模型修改过程,并支持为不同适配器命名以便切换使用。
2025-08-26 19:00:00
207
原创 LoRA(低秩适应,Low-Rank Adaptation)的 alpha 参数解析(54)
本文介绍了神经网络层输出调整的简单实现方法。通过基础层和附加层的组合输出,并引入LoRA(低秩适应)机制,使用alpha参数(通常设为秩的两倍)来调节附加层的影响权重。同时说明了4位量化模型的计算处理方式,建议根据GPU支持情况选择bfloat16或float32数据类型以避免精度问题。文章通过代码示例展示了如何实现层输出的组合计算和LoRA调整,最终验证了输出结果的一致性。
2025-08-25 19:00:00
32
原创 大模型LoRA微调 参数类型与梯度 (55)
文章摘要: 本文探讨了模型微调中的参数选择难题,类比哈姆雷特的经典抉择。重点分析了量化模型中的可训练参数问题,指出核心注意力头因内存限制需保持冻结,仅能训练层归一化和嵌入层等少量参数。详细介绍了prepare_model_for_kbit_training()方法的关键作用:转换数据类型、冻结模型、启用梯度检查点等预处理步骤,为后续LoRA适配器的添加做准备。最后通过代码示例展示了预处理后模型的状态,证实所有参数均被冻结,为后续参数高效微调奠定了基础。(150字)
2025-08-25 19:00:00
33
原创 prepare_model_for_kbit_training()函数解析(56)
本文介绍了如何通过parms_of_dtype()函数识别模型中的FP32参数,这些参数主要包括偏置、嵌入层权重和层归一化参数,但会增加内存占用。prepare_model_for_kbit_training()函数可为低秩适配器训练做准备,包括冻结层、转换未量化层为FP32以提升稳定性,并启用梯度检查点。文中建议根据内存限制考虑使用BF16格式,并指出可通过LoRA配置解冻特定层。量化仅冻结已量化的线性层,而SFTTrainer类会处理梯度检查点等后续操作。
2025-08-25 19:00:00
31
原创 PEFT高效参数微调(Parameter - Efficient Fine - Tuning )(57)
PEFT(高效参数微调)是Hugging Face生态系统中的工具包,用于低成本微调大型预训练模型。它通过仅微调少量额外参数,显著降低计算和存储需求,同时保持与完全微调相当的性能。核心配置包括秩(r)、缩放参数(lora_alpha)、dropout率(lora_dropout)和偏置设置(bias)。典型配置如r=8、lora_alpha=16、dropout=0.05,适用于LLM任务的CAUSAL_LM类型。PEFT支持精细控制各层参数,并可与Transformers等库无缝集成,使大模型训练更易实现
2025-08-25 19:00:00
163
原创 低秩适配(LoRA)简介(50)
本文介绍了低秩适配器(LoRA)技术及其在微调大型语言模型中的应用。LoRA通过在量化冻结的大模型线性层上附加两个小型可训练矩阵,来近似模拟全参数更新的效果,从而显著减少训练参数(可降至1%以下)和计算资源消耗。该方法基于矩阵分解原理,利用小矩阵相乘生成全尺寸更新矩阵,同时保持低秩特性。虽然LoRA的性能可能不及全模型微调,但能大幅提升训练效率。文章还简要说明了相关代码实现和配置选项,并指出该技术特别适合处理大型语言模型的微调任务。
2025-08-22 19:00:00
34
原创 如果LoRA方法这么好,那一开始训练初始模型时为什么不这么做呢?(51)
LoRA方法通过低秩分解实现高效微调,其核心是用两个小矩阵相乘生成低秩更新矩阵。这种低秩特性虽适合微调(仅需小幅调整预训练模型),却限制了从零训练模型的学习能力——低秩约束会大幅降低模型表达能力,使其等效于更小的模型。代码示例展示了如何用1024维输入/输出的基础层,配合两个小矩阵生成低秩更新(如秩为8时仅需16,384参数,而非原百万级参数)。这解释了为什么LoRA仅用于微调而非初始训练:预训练需要高秩矩阵捕捉复杂关系,而微调只需低秩调整已学特征。
2025-08-22 19:00:00
26
原创 LoRA内部原理代码解析(52)
本文展示了如何通过低秩分解(秩设为8)来优化神经网络层。使用两个小矩阵(1024×8和8×1024)相乘可重构原尺寸矩阵(1024×1024),参数数量从104万降至1.6万。虽然重构矩阵保持原尺寸,但其实际秩仍为8。前向传播时可直接将分解矩阵乘积加到基础层权重上,或通过数学等价性优化计算顺序。这种方法在保持模型表达能力的同时显著减少了参数量,适用于需要压缩模型规模的场景。
2025-08-22 19:00:00
390
原创 LoRA内幕机制解析(53)
本文介绍了LoRA(低秩适应)在矩阵乘法中的实现方式。通过分配律,LoRA可拆分为基础层和低秩矩阵两个传播过程:基础层保持原始计算流程,同时使用两个小矩阵(A层和B层)计算额外输出。这两个输出相加得到最终结果,代码验证了其等价性。该方法实现了原始模型参数的冻结,仅训练低秩矩阵,从而高效地进行模型微调。
2025-08-22 19:00:00
154
原创 FP4层与NF4层 4位量化总结(49)
本文比较了FP4和NF4两种4位量化层的核心差异,重点在于bins宽度的划分方式不同。通过示例演示了两种量化方法的具体实现过程:首先创建常规线性层,然后分别加载到FP4和NF4层中。量化仅在模型发送至GPU时执行,FP4采用等距区间划分,而NF4使用非对称区间映射。量化后权重被压缩存储,4位权重打包到8位数字中。最后,文章推荐使用NF4配合双重量化技术,并建议根据硬件支持优先选择FP32、BF16或FP16作为计算数据类型来优化模型性能。
2025-08-21 19:00:00
79
原创 大模型4位量化 (46)
QLoRA是一种微调方法,它将模型量化至4位,并向模型中添加一组低秩适应(LoRA)权重,然后通过量化权重对其进行调优。即使你的GPU不支持torch.bfloat16,你仍然可以使用torch.float32进行全范围计算(假设你有足够的内存),而不是像8位量化那样自动默认使用16位计算。• 你可以放心忽略剩下的参数bnb_4bit_quant_storage,因为它指的是内部用于存储的数据类型。• 大多数线性层都会被量化,其量化后的权重(“二进制索引”)在内部表示为8位整数(torch.int8)。
2025-08-20 19:00:00
54
原创 大模型量化 数据类型的秘密(47)
本文探讨了量化模型中的数据类型处理机制。常规模型各层保持统一数据类型,而量化模型则存在差异:量化层以整数存储权重,运算时需反量化为计算类型(cdt),结果再转换为模型指定类型(tdt)。其中,8位层固定使用float16,4位层可通过参数选择float32或bfloat16。实验显示,当计算类型与模型类型不匹配时会导致性能下降。文章通过代码示例展示了量化配置与内存占用情况,并解释了数据类型转换的完整流程。
2025-08-20 19:00:00
246
原创 4位量化:常规的线性层被替换成了4位线性层(48)
本文探讨了4位量化语言模型的实现细节。通过加载OPT-350M模型并应用4位量化配置,观察到模型内存占用显著降低。量化后的线性层(Linear4bit)权重采用uint8类型存储,内部实现了双量化机制,包含多个量化映射参数。实验结果显示,4位量化虽能减少内存使用,但会导致模型损失值上升(4.7016),表明存在精度损失。量化层的内部表示比8位版本复杂得多,涉及嵌套量化映射和状态参数。研究通过解码器层实例展示了4位量化与常规线性层的结构差异,但未深入量化算法实现细节。
2025-08-20 19:00:00
161
原创 使用空模型实例调用辅助函数,确定在量化过程中哪些层会被跳过(43)
摘要:Facebook的OPT-350M模型中,解码器的嵌入标记层(lm_head)与模型头部(decoder.embed_tokens)共享权重。通过tie_word_embeddings配置和find_tied_parameters()函数可验证这一特性。在量化过程中,使用get_keys_to_not_convert()和空模型实例可识别需要跳过的层(包括共享权重层和最后一层)。注意直接传入已加载模型可能产生错误结果。最终量化模型会保留这些指定层的原始浮点精度(float32),而其他层会被量化。
2025-08-18 19:00:00
32
原创 量化线性层,将原始的fp16/bf16权重加载到Linear8bitLt模块中,调用int8_module.to(“cuda”)量化 (44)
摘要: llm_int8_skip_modules参数允许用户自定义跳过量化的模块名称列表,支持4位和8位量化。该参数通过正则表达式匹配层名(如o_proj),覆盖默认跳过列表。若模型存在权重共享,必须将共享层加入跳过列表,否则会触发AttributeError。量化过程发生在权重加载到GPU时,通过Linear8bitLt模块实现,原始FP16权重状态加载后,调用.to("cuda")完成量化,生成包含int8权重、偏差及量化参数(SCB)的状态字典。
2025-08-18 19:00:00
143
原创 8位量化总结(45)
本文介绍了如何使用Hugging Face的BitsAndBytes库加载8位量化模型。通过配置BitsAndBytesConfig(load_in_8bit=True)并调用AutoModelForCausalLM.from_pretrained(),可以量化模型的大部分线性层,但会保留绑定权重层、最后一层和lm_head层。量化会将非量化层默认转为float16类型,除非显式指定torch_dtype参数。计算在量化层内部以float16格式执行,用户还可通过llm_int8_skip_modules参
2025-08-18 19:00:00
39
原创 8位量化简介(40)
8位量化通过将大部分权重和输入转换为8位整数来压缩模型大小,同时利用16位处理异常值以保持性能。LLM.int8()方法通过分离异常值,在8位和16位混合计算后合并结果。典型配置使用默认阈值6.0检测异常值,量化后模型大小可缩减至原模型的1/4左右。不过,量化仅应用于主要线性层,其他层默认为16位浮点数而非32位。这种技术显著降低了大型语言模型的内存需求,使其更易于部署。
2025-08-15 19:00:00
55
原创 解决量化模型中的 NaN 问题:为何非量化层应选用 FP32?(41)
文章摘要: 本文探讨了量化模型中的数据类型选择问题。研究表明,8位量化层与FP16非量化层搭配会导致数值不稳定(出现NaN),而将非量化层转为FP32可解决该问题。实验显示,使用torch.float32的模型虽然内存占用增加(415MB vs 359MB),但能输出正常的损失值。文中还指出,PEFT包的prepare_model_for_kbit_training()函数同样能实现非量化层转为FP32的效果,确保训练稳定性。建议在加载量化模型时主动指定torch_dtype参数为torch.float32
2025-08-15 19:00:00
190
原创 量化线性层(42)
本文展示了如何对Transformer模型中的线性层进行8位量化。通过检查OPTDecoderLayer可以看到,原有的线性层(如k_proj、v_proj等)已被替换为Linear8bitLt量化版本。量化后的权重以int8形式存储,而偏置保持为float16。文中指出,除了线性层外,等价的Conv1D层也会被量化,但具有权重共享的层会被自动跳过量化过程。这些量化操作能有效减少模型存储需求和计算开销,同时保持模型性能。
2025-08-15 19:00:00
191
原创 在FP32输入上计算前向传播需要多长时间?FP16模型的实例与之前的模型相比,它快了多少?
摘要:实验比较了不同精度模型在GPU上的计算性能。使用PyTorch实现的两层全连接模型测试显示:纯FP16模型(248μs)比FP32模型(1.41ms)快5倍多。通过autocast上下文管理器实现混合精度计算时,FP32模型在FP16环境下运行仅需277μs,性能接近纯FP16模型,证明混合精度能有效提升计算速度而无需手动转换数据类型。实验在NVIDIA GPU上完成,展示了混合精度训练的实际优势。
2025-08-14 19:00:00
474
原创 纯半精度模型和全精度模型的耗时分别为248微秒和1400微秒。混合精度模型371微秒比原始模型快大约四倍!
摘要:本文介绍了混合精度训练的实现机制。通过torch.autocast上下文管理器将FP32模型的forward方法包装两次:第一次生成FP16输出提升计算速度,第二次将输出转换回FP32。Hugging Face的trainer类简化了这一过程,只需设置fp16/bf16参数。实验显示,经过包装的混合精度模型比全精度模型快约4倍(371μs vs 1400μs),同时保持FP32输出精度。这种技术在不损失精度的情况下显著提升了训练效率。
2025-08-14 19:00:00
160
原创 BitsAndBytes 是 quantization(量化)任务的首选工具
摘要:BitsAndBytes是一个强大的量化工具包,可显著降低大型语言模型的内存消耗。通过PyTorch集成,它支持8位和4位量化,分别减少模型大小至1/4和1/8。核心功能包括8位优化器、LLM.Int()推理技术和QLoRA训练技术。配置通过BitsAndBytesConfig实现,可调整量化类型、计算精度等参数。8位量化适合一般场景,4位量化更节省内存但需权衡精度。工具与Hugging Face生态无缝集成,是资源受限环境下部署LLM的理想选择。(149字)
2025-08-14 19:00:00
234
Rasa对话机器人连载一 第121课:Rasa对话机器人Debugging项目实战之电商零售对话机器人运行流程调试全程演示-1
2022-04-20
Rasa对话机器人连载二 第121课:Rasa对话机器人Debugging项目实战之电商零售对话机器人运行流程调试全程演示-2
2022-04-20
Rasa对话机器人连载四 第121课:Rasa对话机器人Debugging项目实战之电商零售对话机器人运行流程调试全程演示-4
2022-04-21
Rasa对话机器人连载七 第122课:Rasa对话机器人Debugging项目实战之银行金融对话机器人全生命周期调试实战-(三)
2022-04-21
Rasa对话机器人Debugging项目实战之电商零售、银行金融、保险行业、教育领域对话机器人第121课-第128课学习笔记
2022-04-21
Rasa对话机器人连载十二 第124课:Rasa对话机器人Debugging项目实战之保险行业调试全程实战解密(三).rar
2022-04-21
Rasa对话机器人连载十九 第126课:Rasa对话机器人Debugging项目实战之教育领域项目调试 解密(二).pdf
2022-04-21
Rasa对话机器人连载十三 第124课:Rasa对话机器人Debugging项目实战之保险行业调试全程实战解密(四).pdf
2022-04-21
第123课:Rasa对话机器人Debugging项目实战之图解银行金融案例架构视角下的Training及Reference全生命
2022-04-08
第121课:Rasa对话机器人Debugging项目实战之电商零售对话机器人运行流程调试全程演示-1
2022-03-20
第121课:Rasa对话机器人Debugging项目实战之电商零售对话机器人运行流程调试全程演示-4
2022-03-20
第122课:Rasa对话机器人Debugging项目实战之银行金融对话机器人全生命周期调试实战
2022-03-29
第121课:Rasa对话机器人Debugging项目实战之电商零售对话机器人运行流程调试全程演示
2022-03-29
tensorflow-1.15.0-cp36-cp36m-win_amd64.whl
2020-09-01
fr-en.tgz https://www.statmt.org/ europarl/v7/fr-en.tgz
2021-09-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人