包络提取方法解读
包络提取是信号处理中的一项重要技术,用于从复杂信号中提取其幅度变化的轮廓。简单来说,包络就是连接所有波峰的平滑曲线。
基本概念与数学基础
对于一个复数信号 z(t)=x(t)+jy(t)z(t) = x(t) + jy(t)z(t)=x(t)+jy(t),其包络定义为模值:
∣z(t)∣=x2(t)+y2(t)|z(t)| = \sqrt{x^2(t) + y^2(t)}∣z(t)∣=x2(t)+y2(t)
对于实信号 x(t)x(t)x(t),我们通常希望构造一个解析信号 z(t)z(t)z(t),使得:
z(t)=A(t)ejϕ(t)=A(t)[cos(ϕ(t))+jsin(ϕ(t))]z(t) = A(t)e^{j\phi(t)} = A(t)[\cos(\phi(t)) + j\sin(\phi(t))]z(t)=A(t)ejϕ(t)=A(t)[cos(ϕ(t))+jsin(ϕ(t))]
其中 A(t)=∣z(t)∣A(t) = |z(t)|A(t)=∣z(t)∣ 是瞬时幅度(包络),ϕ(t)=arg(z(t))\phi(t) = \arg(z(t))ϕ(t)=arg(z(t)) 是瞬时相位。
瞬时频率定义为相位的时间导数:
ωi(t)=dϕ(t)dt=ddtarctan(y(t)x(t))\omega_i(t) = \frac{d\phi(t)}{dt} = \frac{d}{dt}\arctan\left(\frac{y(t)}{x(t)}\right)ωi(t)=dtdϕ(t)=dtdarctan(x(t)y(t))
通过链式法则展开:
ωi(t)=x(t)dy(t)dt−y(t)dx(t)dtx2(t)+y2(t)\omega_i(t) = \frac{x(t)\frac{dy(t)}{dt} - y(t)\frac{dx(t)}{dt}}{x^2(t) + y^2(t)}ωi(t)=x2(t)+y2(t)x(t)dtdy(t)−y(t)dtdx(t)
希尔伯特变换法
希尔伯特变换是包络提取中最经典和理论最完善的方法。对于实信号 x(t)x(t)x(t),其希尔伯特变换定义为:
x^(t)=H{x(t)}=1πP.V.∫−∞∞x(τ)t−τdτ\hat{x}(t) = \mathcal{H}\{x(t)\} = \frac{1}{\pi} \text{P.V.} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d\taux^(t)=H{x(t)}=π1P.V.∫−∞∞t−τx(τ)dτ
其中 P.V. 表示柯西主值积分。这个积分的数学意义可以通过极限来理解:
x^(t)=limϵ→0+1π[∫−∞t−ϵx(τ)t−τdτ+∫t+ϵ∞x(τ)t−τdτ]\hat{x}(t) = \lim_{\epsilon \to 0^+} \frac{1}{\pi} \left[\int_{-\infty}^{t-\epsilon} \frac{x(\tau)}{t-\tau} d\tau + \int_{t+\epsilon}^{\infty} \frac{x(\tau)}{t-\tau} d\tau\right]x^(t)=ϵ→0+limπ1[∫−∞t−ϵt−τx(τ)dτ+∫t+ϵ∞t−τx(τ)dτ]
在频域中,希尔伯特变换对应于:
X^(ω)=F{x^(t)}=−j⋅sgn(ω)⋅X(ω)\hat{X}(\omega) = \mathcal{F}\{\hat{x}(t)\} = -j \cdot \text{sgn}(\omega) \cdot X(\omega)X^(ω)=F{x^(t)}=−j⋅sgn(ω)⋅X(ω)
其中符号函数为:
sgn(ω)={1,ω>00,ω=0−1,ω<0\text{sgn}(\omega) = \begin{cases} 1, & \omega > 0 \\ 0, & \omega = 0 \\ -1, & \omega < 0 \end{cases}sgn(ω)=⎩⎨⎧1,0,−1,ω>0ω=0ω<0
解析信号的构造为:
z(t)=x(t)+jx^(t)z(t) = x(t) + j\hat{x}(t)z(t)=x(t)+jx^(t)
其频谱具有单侧性质:
Z(ω)={2X(ω),ω>0X(0),ω=00,ω<0Z(\omega) = \begin{cases} 2X(\omega), & \omega > 0 \\ X(0), & \omega = 0 \\ 0, & \omega < 0 \end{cases}Z(ω)=⎩⎨⎧2X(ω),X(0),0,ω>0ω=0ω<0
瞬时幅度(包络)为:
A(t)=∣z(t)∣=x2(t)+x^2(t)A(t) = |z(t)| = \sqrt{x^2(t) + \hat{x}^2(t)}A(t)=∣z(t)∣=x2(t)+x^2(t)
瞬时相位为:
ϕ(t)=arctan(x^(t)x(t))\phi(t) = \arctan\left(\frac{\hat{x}(t)}{x(t)}\right)ϕ(t)=arctan(x(t)x^(t))
希尔伯特变换具有重要的数学性质。对于正弦函数 x(t)=Acos(ω0t+ϕ0)x(t) = A\cos(\omega_0 t + \phi_0)x(t)=Acos(ω0t+ϕ0),其希尔伯特变换为:
x^(t)=Asin(ω0t+ϕ0)\hat{x}(t) = A\sin(\omega_0 t + \phi_0)x^(t)=Asin(ω0t+ϕ0)
这表明希尔伯特变换将余弦函数转换为同频率的正弦函数。
对于复杂信号,希尔伯特变换的卷积形式为:
x^(t)=x(t)∗h(t)=x(t)∗1πt\hat{x}(t) = x(t) * h(t) = x(t) * \frac{1}{\pi t}x^(t)=x(t)∗h(t)=x(t)∗πt1
其中 h(t)=1πth(t) = \frac{1}{\pi t}h(t)=πt1 是希尔伯特变换的冲激响应。
包络检波法
包络检波的数学模型基于整流和滤波操作。对于AM调制信号:
x(t)=A(t)[1+m(t)]cos(ωct+ϕc)x(t) = A(t)[1 + m(t)]\cos(\omega_c t + \phi_c)x(t)=A(t)[1+m(t)]cos(ωct+ϕc)
其中 A(t)A(t)A(t) 是缓变包络,m(t)m(t)m(t) 是调制信号,ωc\omega_cωc 是载波频率。
全波整流后的信号为:
xr(t)=∣x(t)∣=∣A(t)[1+m(t)]∣∣cos(ωct+ϕc)∣x_r(t) = |x(t)| = |A(t)[1 + m(t)]||\cos(\omega_c t + \phi_c)|xr(t)=∣x(t)∣=∣A(t)[1+m(t)]∣∣cos(ωct+ϕc)∣
利用三角函数的傅里叶级数展开:
∣cos(ωct+ϕc)∣=2π−4π∑n=1∞cos(2nωct+2nϕc)4n2−1|\cos(\omega_c t + \phi_c)| = \frac{2}{\pi} - \frac{4}{\pi}\sum_{n=1}^{\infty} \frac{\cos(2n\omega_c t + 2n\phi_c)}{4n^2 - 1}∣cos(ωct+ϕc)∣=π2−π4n=1∑∞4n2−1cos(2nωct+2nϕc)
整流信号包含直流分量和高频分量:
xr(t)=2A(t)[1+m(t)]π−4A(t)[1+m(t)]π∑n=1∞cos(2nωct+2nϕc)4n2−1x_r(t) = \frac{2A(t)[1 + m(t)]}{\pi} - \frac{4A(t)[1 + m(t)]}{\pi}\sum_{n=1}^{\infty} \frac{\cos(2n\omega_c t + 2n\phi_c)}{4n^2 - 1}xr(t)=π2A(t)[1+m(t)]−π4A(t)[1+m(t)]n=1∑∞4n2−1cos(2nωct+2nϕc)
通过截止频率为 ωL\omega_LωL 的低通滤波器,滤波器的传递函数为 H(jω)H(j\omega)H(jω),则输出为:
y(t)=F−1{Xr(ω)⋅H(jω)}y(t) = \mathcal{F}^{-1}\{X_r(\omega) \cdot H(j\omega)\}y(t)=F−1{Xr(ω)⋅H(jω)}
对于理想低通滤波器:
H(jω)={1,∣ω∣≤ωL0,∣ω∣>ωLH(j\omega) = \begin{cases} 1, & |\omega| \leq \omega_L \\ 0, & |\omega| > \omega_L \end{cases}H(jω)={1,0,∣ω∣≤ωL∣ω∣>ωL
如果选择 ωmax<ωL<2ωc\omega_{max} < \omega_L < 2\omega_cωmax<ωL<2ωc,其中 ωmax\omega_{max}ωmax 是 m(t)m(t)m(t) 的最高频率分量,则可以有效提取包络。
对于实际的一阶RC低通滤波器:
H(jω)=11+jωRCH(j\omega) = \frac{1}{1 + j\omega RC}H(jω)=1+jωRC1
其时域冲激响应为:
h(t)=1RCe−tRCu(t)h(t) = \frac{1}{RC}e^{-\frac{t}{RC}}u(t)h(t)=RC1e−RCtu(t)
包络估计为:
A^(t)=∫0∞xr(t−τ)1RCe−τRCdτ\hat{A}(t) = \int_{0}^{\infty} x_r(t-\tau) \frac{1}{RC}e^{-\frac{\tau}{RC}} d\tauA^(t)=∫0∞xr(t−τ)RC1e−RCτdτ
这可以写成微分方程的形式:
RCdA^(t)dt+A^(t)=xr(t)RC\frac{d\hat{A}(t)}{dt} + \hat{A}(t) = x_r(t)RCdtdA^(t)+A^(t)=xr(t)
峰值检测法
峰值检测法的数学基础是寻找信号的局部极值。对于连续信号 x(t)x(t)x(t),局部最大值点 t0t_0t0 满足:
dx(t)dt∣t=t0=0且d2x(t)dt2∣t=t0<0\frac{dx(t)}{dt}\bigg|_{t=t_0} = 0 \quad \text{且} \quad \frac{d^2x(t)}{dt^2}\bigg|_{t=t_0} < 0dtdx(t)t=t0=0且dt2d2x(t)t=t0<0
对于离散信号 x[n]x[n]x[n],峰值检测条件为:
x[n0]>x[n0−1]且x[n0]>x[n0+1]x[n_0] > x[n_0-1] \quad \text{且} \quad x[n_0] > x[n_0+1]x[n0]>x[n0−1]且x[n0]>x[n0+1]
更严格的峰值检测可以使用二阶差分:
Δ2x[n]=x[n+1]−2x[n]+x[n−1]\Delta^2 x[n] = x[n+1] - 2x[n] + x[n-1]Δ2x[n]=x[n+1]−2x[n]+x[n−1]
峰值点处有 Δ2x[n0]<0\Delta^2 x[n_0] < 0Δ2x[n0]<0。
检测到峰值点 (ti,xi)(t_i, x_i)(ti,xi) 后,使用三次样条插值重构包络。三次样条函数在区间 [ti,ti+1][t_i, t_{i+1}][ti,ti+1] 上定义为:
Si(t)=ai(t−ti)3+bi(t−ti)2+ci(t−ti)+diS_i(t) = a_i(t-t_i)^3 + b_i(t-t_i)^2 + c_i(t-t_i) + d_iSi(t)=ai(t−ti)3+bi(t−ti)2+ci(t−ti)+di
边界条件和连续性条件给出参数方程组:
[10001hihi2hi30100012hi3hi2][dicibiai]=[xixi+1Si′(ti)Si′(ti+1)]\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & h_i & h_i^2 & h_i^3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2h_i & 3h_i^2 \end{bmatrix} \begin{bmatrix} d_i \\ c_i \\ b_i \\ a_i \end{bmatrix} = \begin{bmatrix} x_i \\ x_{i+1} \\ S'_i(t_i) \\ S'_i(t_{i+1}) \end{bmatrix}11000hi110hi202hi0hi303hi2dicibiai=xixi+1Si′(ti)Si′(ti+1)
其中 hi=ti+1−tih_i = t_{i+1} - t_ihi=ti+1−ti。
自然样条的边界条件为 S0′′(t0)=Sn−1′′(tn)=0S''_0(t_0) = S''_{n-1}(t_n) = 0S0′′(t0)=Sn−1′′(tn)=0,导致三对角线性方程组:
[2(h0+h1)h10⋯0h12(h1+h2)h2⋯0⋮⋮⋱⋱⋮00⋯hn−22(hn−2+hn−1)][M1M2⋮Mn−1]=[6f[t0,t1,t2]6f[t1,t2,t3]⋮6f[tn−2,tn−1,tn]]\begin{bmatrix} 2(h_0+h_1) & h_1 & 0 & \cdots & 0 \\ h_1 & 2(h_1+h_2) & h_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & h_{n-2} & 2(h_{n-2}+h_{n-1}) \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-1} \end{bmatrix} = \begin{bmatrix} 6f[t_0,t_1,t_2] \\ 6f[t_1,t_2,t_3] \\ \vdots \\ 6f[t_{n-2},t_{n-1},t_n] \end{bmatrix}2(h0+h1)h1⋮0h12(h1+h2)⋮00h2⋱⋯⋯⋯⋱hn−200⋮2(hn−2+hn−1)M1M2⋮Mn−1=6f[t0,t1,t2]6f[t1,t2,t3]⋮6f[tn−2,tn−1,tn]
其中 Mi=Si′′(ti)M_i = S''_i(t_i)Mi=Si′′(ti),f[ti,ti+1,ti+2]f[t_i,t_{i+1},t_{i+2}]f[ti,ti+1,ti+2] 是二阶差商。
滑动窗口法
滑动窗口法通过局部统计量估计包络。对于长度为 LLL 的窗口,RMS包络定义为:
ARMS[n]=1L∑k=n−L+1nx2[k]A_{RMS}[n] = \sqrt{\frac{1}{L}\sum_{k=n-L+1}^{n} x^2[k]}ARMS[n]=L1k=n−L+1∑nx2[k]
这等价于信号平方通过移动平均滤波器:
ARMS2[n]=x2[n]∗w[n]A_{RMS}^2[n] = x^2[n] * w[n]ARMS2[n]=x2[n]∗w[n]
其中 w[n]=1Lw[n] = \frac{1}{L}w[n]=L1 对 0≤n≤L−10 \leq n \leq L-10≤n≤L−1,否则为0。
在频域中,移动平均滤波器的频率响应为:
W(ejω)=1L⋅sin(ωL/2)sin(ω/2)⋅e−jω(L−1)/2W(e^{j\omega}) = \frac{1}{L} \cdot \frac{\sin(\omega L/2)}{\sin(\omega/2)} \cdot e^{-j\omega(L-1)/2}W(ejω)=L1⋅sin(ω/2)sin(ωL/2)⋅e−jω(L−1)/2
其幅度响应为:
∣W(ejω)∣=1L∣sin(ωL/2)sin(ω/2)∣|W(e^{j\omega})| = \frac{1}{L} \left|\frac{\sin(\omega L/2)}{\sin(\omega/2)}\right|∣W(ejω)∣=L1sin(ω/2)sin(ωL/2)
对于指数加权移动平均,权重函数为:
w[k]=α(1−α)k,k=0,1,2,…w[k] = \alpha(1-\alpha)^k, \quad k = 0, 1, 2, \ldotsw[k]=α(1−α)k,k=0,1,2,…
其中 0<α<10 < \alpha < 10<α<1 是遗忘因子。指数加权RMS包络为:
AEWMA2[n]=αx2[n]+(1−α)AEWMA2[n−1]A_{EWMA}^2[n] = \alpha x^2[n] + (1-\alpha)A_{EWMA}^2[n-1]AEWMA2[n]=αx2[n]+(1−α)AEWMA2[n−1]
这对应于一阶IIR滤波器:
H(z)=α1−(1−α)z−1H(z) = \frac{\alpha}{1-(1-\alpha)z^{-1}}H(z)=1−(1−α)z−1α
自适应窗口长度可以基于信号的局部统计特性。定义局部方差为:
σ2[n]=1L0∑k=n−L0+1n(x[k]−xˉ[n])2\sigma^2[n] = \frac{1}{L_0}\sum_{k=n-L_0+1}^{n} (x[k] - \bar{x}[n])^2σ2[n]=L01k=n−L0+1∑n(x[k]−xˉ[n])2
其中 xˉ[n]=1L0∑k=n−L0+1nx[k]\bar{x}[n] = \frac{1}{L_0}\sum_{k=n-L_0+1}^{n} x[k]xˉ[n]=L01∑k=n−L0+1nx[k] 是局部均值。
自适应窗口长度为:
L[n]=Lmin+(Lmax−Lmin)⋅exp(−σ2[n]σ02)L[n] = L_{min} + (L_{max} - L_{min}) \cdot \exp\left(-\frac{\sigma^2[n]}{\sigma_0^2}\right)L[n]=Lmin+(Lmax−Lmin)⋅exp(−σ02σ2[n])
其中 σ02\sigma_0^2σ02 是归一化参数。
经验模态分解法
EMD的数学基础是将信号自适应地分解为固有模态函数(IMF)。对于信号 x(t)x(t)x(t),EMD分解为:
x(t)=∑i=1nci(t)+rn(t)x(t) = \sum_{i=1}^{n} c_i(t) + r_n(t)x(t)=i=1∑nci(t)+rn(t)
其中 ci(t)c_i(t)ci(t) 是第 iii 个IMF,rn(t)r_n(t)rn(t) 是残余分量。
筛选过程的数学描述如下。设上包络为 emax(t)e_{max}(t)emax(t),下包络为 emin(t)e_{min}(t)emin(t),均值包络为:
m(t)=emax(t)+emin(t)2m(t) = \frac{e_{max}(t) + e_{min}(t)}{2}m(t)=2emax(t)+emin(t)
第 kkk 次筛选的结果为:
hk(t)=hk−1(t)−mk−1(t)h_k(t) = h_{k-1}(t) - m_{k-1}(t)hk(t)=hk−1(t)−mk−1(t)
其中 h0(t)=x(t)h_0(t) = x(t)h0(t)=x(t)。
IMF的判定准则包括:
-
极值点数量条件:∣Next−Nzero∣≤1|N_{ext} - N_{zero}| \leq 1∣Next−Nzero∣≤1,其中 NextN_{ext}Next 是极值点数量,NzeroN_{zero}Nzero 是零交叉点数量。
-
均值条件:1T∫0T∣m(t)∣2dt<ϵ\frac{1}{T}\int_0^T |m(t)|^2 dt < \epsilonT1∫0T∣m(t)∣2dt<ϵ,其中 TTT 是信号长度,ϵ\epsilonϵ 是阈值。
-
标准差条件:SD=∑t=0T∣hk−1(t)−hk(t)∣2hk−12(t)<δSD = \sum_{t=0}^{T} \frac{|h_{k-1}(t) - h_k(t)|^2}{h_{k-1}^2(t)} < \deltaSD=∑t=0Thk−12(t)∣hk−1(t)−hk(t)∣2<δ
包络插值通常使用三次样条。对于 nnn 个极值点 (ti,xi)(t_i, x_i)(ti,xi),三次样条插值的矩阵形式为:
AM=B\mathbf{A}\mathbf{M} = \mathbf{B}AM=B
其中 A\mathbf{A}A 是三对角矩阵:
Ai,j={hi−1,j=i−12(hi−1+hi),j=ihi,j=i+10,其他A_{i,j} = \begin{cases} h_{i-1}, & j = i-1 \\ 2(h_{i-1} + h_i), & j = i \\ h_i, & j = i+1 \\ 0, & \text{其他} \end{cases}Ai,j=⎩⎨⎧hi−1,2(hi−1+hi),hi,0,j=i−1j=ij=i+1其他
M=[M1,M2,…,Mn−1]T\mathbf{M} = [M_1, M_2, \ldots, M_{n-1}]^TM=[M1,M2,…,Mn−1]T 是二阶导数向量,B\mathbf{B}B 是右端向量。
集合经验模态分解(EEMD)通过添加白噪声改善模态混叠问题:
xi(t)=x(t)+ni(t)x_i(t) = x(t) + n_i(t)xi(t)=x(t)+ni(t)
其中 ni(t)n_i(t)ni(t) 是第 iii 次实现的白噪声,方差为 σ2\sigma^2σ2。最终的IMF为:
cj(t)=1N∑i=1Ncj,i(t)c_j(t) = \frac{1}{N}\sum_{i=1}^{N} c_{j,i}(t)cj(t)=N1i=1∑Ncj,i(t)
其中 cj,i(t)c_{j,i}(t)cj,i(t) 是第 iii 次噪声实现下的第 jjj 个IMF。
小波变换法
连续小波变换(CWT)提供了时频分析的强大工具。对于信号 x(t)x(t)x(t) 和母小波 ψ(t)\psi(t)ψ(t),CWT定义为:
Wx(a,b)=1a∫−∞∞x(t)ψ∗(t−ba)dtW_x(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \psi^*\left(\frac{t-b}{a}\right) dtWx(a,b)=a1∫−∞∞x(t)ψ∗(at−b)dt
其中 a>0a > 0a>0 是尺度参数,b∈Rb \in \mathbb{R}b∈R 是平移参数。
母小波必须满足可容许性条件:
Cψ=∫−∞∞∣Ψ(ω)∣2∣ω∣dω<∞C_\psi = \int_{-\infty}^{\infty} \frac{|\Psi(\omega)|^2}{|\omega|} d\omega < \inftyCψ=∫−∞∞∣ω∣∣Ψ(ω)∣2dω<∞
其中 Ψ(ω)\Psi(\omega)Ψ(ω) 是 ψ(t)\psi(t)ψ(t) 的傅里叶变换。这个条件隐含了 Ψ(0)=0\Psi(0) = 0Ψ(0)=0,即小波函数的零均值特性。
常用的Morlet小波定义为:
ψ(t)=π−1/4e−t2/2ejω0t\psi(t) = \pi^{-1/4} e^{-t^2/2} e^{j\omega_0 t}ψ(t)=π−1/4e−t2/2ejω0t
其傅里叶变换为:
Ψ(ω)=π1/42e−(ω−ω0)2/2\Psi(\omega) = \pi^{1/4} \sqrt{2} e^{-(\omega-\omega_0)^2/2}Ψ(ω)=π1/42e−(ω−ω0)2/2
Mexican hat小波(二阶高斯导数)为:
ψ(t)=23π1/4(1−t2)e−t2/2\psi(t) = \frac{2}{\sqrt{3}\pi^{1/4}} (1-t^2) e^{-t^2/2}ψ(t)=3π1/42(1−t2)e−t2/2
小波变换的模值 ∣Wx(a,b)∣|W_x(a,b)|∣Wx(a,b)∣ 提供了信号在时间-尺度平面上的能量分布。对于包络提取,脊线算法寻找使小波系数模值最大的尺度曲线:
aridge(b)=argmaxa∣Wx(a,b)∣a_{ridge}(b) = \arg\max_a |W_x(a,b)|aridge(b)=argamax∣Wx(a,b)∣
脊线检测可以通过梯度方法实现:
∂∂a∣Wx(a,b)∣=0\frac{\partial}{\partial a} |W_x(a,b)| = 0∂a∂∣Wx(a,b)∣=0
这导致:
Re{Wx(a,b)∂Wx∗(a,b)∂a}=0\text{Re}\left\{W_x(a,b) \frac{\partial W_x^*(a,b)}{\partial a}\right\} = 0Re{Wx(a,b)∂a∂Wx∗(a,b)}=0
其中:
∂Wx(a,b)∂a=−12a3/2∫−∞∞x(t)[ψ∗(t−ba)+t−baψ′∗(t−ba)]dt\frac{\partial W_x(a,b)}{\partial a} = -\frac{1}{2a^{3/2}} \int_{-\infty}^{\infty} x(t) \left[\psi^*\left(\frac{t-b}{a}\right) + \frac{t-b}{a}\psi'^*\left(\frac{t-b}{a}\right)\right] dt∂a∂Wx(a,b)=−2a3/21∫−∞∞x(t)[ψ∗(at−b)+at−bψ′∗(at−b)]dt
基于脊线的瞬时频率估计为:
ωi(b)=ωψ2πaridge(b)\omega_i(b) = \frac{\omega_\psi}{2\pi a_{ridge}(b)}ωi(b)=2πaridge(b)ωψ
其中 ωψ\omega_\psiωψ 是母小波的中心频率。
小波包络估计为:
A(t)=∣Wx(aridge(t),t)∣A(t) = |W_x(a_{ridge}(t), t)|A(t)=∣Wx(aridge(t),t)∣
数学形态学方法
数学形态学基于集合论和拓扑学,为信号处理提供了非线性滤波工具。对于一维信号 f:Z→Rf: \mathbb{Z} \rightarrow \mathbb{R}f:Z→R 和结构元素 B⊂ZB \subset \mathbb{Z}B⊂Z,基本形态学操作定义为:
腐蚀:(f⊖B)(n)=infb∈Bf(n+b)(f \ominus B)(n) = \inf_{b \in B} f(n+b)(f⊖B)(n)=infb∈Bf(n+b)
膨胀:(f⊕B)(n)=supb∈Bf(n−b)(f \oplus B)(n) = \sup_{b \in B} f(n-b)(f⊕B)(n)=supb∈Bf(n−b)
开运算:f∘B=(f⊖B)⊕Bf \circ B = (f \ominus B) \oplus Bf∘B=(f⊖B)⊕B
闭运算:f∙B=(f⊕B)⊖Bf \bullet B = (f \oplus B) \ominus Bf∙B=(f⊕B)⊖B
这些操作具有重要的代数性质。腐蚀和膨胀是对偶操作:
(f⊖B)c=fc⊕B^(f \ominus B)^c = f^c \oplus \hat{B}(f⊖B)c=fc⊕B^
其中 fcf^cfc 是 fff 的补集,B^={−b:b∈B}\hat{B} = \{-b : b \in B\}B^={−b:b∈B} 是 BBB 的反射。
开运算和闭运算是幂等的:
(f∘B)∘B=f∘B(f \circ B) \circ B = f \circ B(f∘B)∘B=f∘B
(f∙B)∙B=f∙B(f \bullet B) \bullet B = f \bullet B(f∙B)∙B=f∙B
并且满足对偶性:
(f∘B)c=fc∙B^(f \circ B)^c = f^c \bullet \hat{B}(f∘B)c=fc∙B^
形态学梯度定义为膨胀和腐蚀的差:
∇Bf=(f⊕B)−(f⊖B)\nabla_B f = (f \oplus B) - (f \ominus B)∇Bf=(f⊕B)−(f⊖B)
这提供了边缘检测的工具。
对于包络提取,交替序列滤波器(ASF)特别有用:
ASFn∘∙(f)=((⋯((f∘B1)∙B1)∘B2)∙B2⋯ )∘Bn)∙Bn\text{ASF}_n^{\circ\bullet}(f) = ((\cdots((f \circ B_1) \bullet B_1) \circ B_2) \bullet B_2 \cdots) \circ B_n) \bullet B_nASFn∘∙(f)=((⋯((f∘B1)∙B1)∘B2)∙B2⋯)∘Bn)∙Bn
其中 B1⊂B2⊂⋯⊂BnB_1 \subset B_2 \subset \cdots \subset B_nB1⊂B2⊂⋯⊂Bn 是递增的结构元素序列。
形态学包络可以定义为:
上包络:eupper(n)=(f∙B)(n)e_{upper}(n) = (f \bullet B)(n)eupper(n)=(f∙B)(n)
下包络:elower(n)=(f∘B)(n)e_{lower}(n) = (f \circ B)(n)elower(n)=(f∘B)(n)
信号的形态学包络为:
A(n)=eupper(n)+∣elower(n)∣2A(n) = \frac{e_{upper}(n) + |e_{lower}(n)|}{2}A(n)=2eupper(n)+∣elower(n)∣
结构元素的优化可以通过最小化重构误差来实现:
Bopt=argminB∑n∣f(n)−ReconB(f)(n)∣2B_{opt} = \arg\min_B \sum_{n} |f(n) - \text{Recon}_B(f)(n)|^2Bopt=argBminn∑∣f(n)−ReconB(f)(n)∣2
其中 ReconB(f)\text{Recon}_B(f)ReconB(f) 是基于结构元素 BBB 的形态学重构。
滤波器组方法
滤波器组方法将信号分解到多个频率子带,每个子带独立进行包络提取。完美重构滤波器组满足:
∑k=0M−1Hk(z)Gk(z)=cz−n0\sum_{k=0}^{M-1} H_k(z)G_k(z) = cz^{-n_0}k=0∑M−1Hk(z)Gk(z)=cz−n0
其中 Hk(z)H_k(z)Hk(z) 是分析滤波器,Gk(z)G_k(z)Gk(z) 是综合滤波器,ccc 是常数,n0n_0n0 是延迟。
对于均匀DFT滤波器组,分析滤波器为:
Hk(z)=H(zWM−k)H_k(z) = H(zW_M^{-k})Hk(z)=H(zWM−k)
其中 WM=ej2π/MW_M = e^{j2\pi/M}WM=ej2π/M,H(z)H(z)H(z) 是原型滤波器。
子带信号为:
xk[n]=∑mx[m]hk[n−m]x_k[n] = \sum_{m} x[m] h_k[n-m]xk[n]=m∑x[m]hk[n−m]
每个子带的希尔伯特变换为:
x^k[n]=∑mxk[m]sin(π(n−m)/2)π(n−m)/2\hat{x}_k[n] = \sum_{m} x_k[m] \frac{\sin(\pi(n-m)/2)}{\pi(n-m)/2}x^k[n]=m∑xk[m]π(n−m)/2sin(π(n−m)/2)
子带包络为:
Ak[n]=xk2[n]+x^k2[n]A_k[n] = \sqrt{x_k^2[n] + \hat{x}_k^2[n]}Ak[n]=xk2[n]+x^k2[n]
加权合成的总包络为:
A[n]=∑k=0M−1wk[n]Ak[n]A[n] = \sum_{k=0}^{M-1} w_k[n] A_k[n]A[n]=k=0∑M−1wk[n]Ak[n]
自适应权重基于子带能量:
wk[n]=Ek[n]∑i=0M−1Ei[n]w_k[n] = \frac{E_k[n]}{\sum_{i=0}^{M-1} E_i[n]}wk[n]=∑i=0M−1Ei[n]Ek[n]
其中瞬时能量为:
Ek[n]=αEk[n−1]+(1−α)(xk2[n]+x^k2[n])E_k[n] = \alpha E_k[n-1] + (1-\alpha)(x_k^2[n] + \hat{x}_k^2[n])Ek[n]=αEk[n−1]+(1−α)(xk2[n]+x^k2[n])
多相实现提高了计算效率。多相分解为:
Hk(z)=∑l=0M−1z−lEk,l(zM)H_k(z) = \sum_{l=0}^{M-1} z^{-l} E_{k,l}(z^M)Hk(z)=l=0∑M−1z−lEk,l(zM)
其中 Ek,l(z)E_{k,l}(z)Ek,l(z) 是多相分量。