跳频技术在雷达系统中应用的数学原理
引言
在现代雷达技术的发展历程中,如何同时准确测量目标的距离和速度一直是一个核心挑战。传统的调频连续波(FMCW)雷达虽然在许多应用场景中表现出色,但面对复杂的多目标环境时,往往会遇到距离-速度耦合的问题。这就像我们在雾天开车,不仅要判断前车的距离,还要判断它的速度,而这两个信息可能会相互干扰。跳频技术的引入,为解决这一难题提供了一种方案。
从传统FMCW说起
要理解跳频技术的价值,我们先回顾一下传统FMCW雷达的工作原理。FMCW雷达发射的是频率随时间线性变化的连续波信号,就像一个音调不断升高的哨音。当这个信号遇到目标反射回来时,由于传播时间的延迟,接收信号相对于当前发射信号会有一个频率差,这个频率差正比于目标距离。
数学上,发射信号可以表示为:
st(t)=exp[j2π(f0t+μt22)]s_t(t) = \exp\left[j2\pi\left(f_0 t + \frac{\mu t^2}{2}\right)\right]st(t)=exp[j2π(f0t+2μt2)]
其中 f0f_0f0 是起始频率,μ=B/T\mu = B/Tμ=B/T 是调频斜率,BBB 是扫频带宽,TTT 是扫频周期。
对于距离为 RRR 的静止目标,回波信号经历了 τ=2R/c\tau = 2R/cτ=2R/c 的时间延迟,混频后得到的中频信号频率为:
fIF=μτ=2μRcf_{IF} = \mu \tau = \frac{2\mu R}{c}fIF=μτ=c2μR
这个简单的线性关系让我们可以通过测量频率来确定距离。然而,当目标运动时,情况变得复杂起来。
运动目标带来的挑战
当目标以速度 vvv 运动时,不仅会产生传统的多普勒频移,还会影响FMCW的测距结果。这是因为在每个扫频周期内,目标的距离都在变化。假设我们发射多个连续的chirp信号(这在实际雷达中很常见,用于提高信噪比和测量精度),第 mmm 个chirp的回波延迟变成:
τm=2(R0+v⋅mT)c\tau_m = \frac{2(R_0 + v \cdot m T)}{c}τm=c2(R0+v⋅mT)
这里 R0R_0R0 是初始距离,mTmTmT 是到第 mmm 个chirp的时间。
这种随时间变化的延迟会在两个维度上影响测量结果。在单个chirp内(快时间维度),速度会引入额外的频率偏移;在多个chirp之间(慢时间维度),会产生多普勒频移。更麻烦的是,这两种效应相互耦合,使得我们难以准确分离距离和速度信息。
跳频技术的引入
跳频技术的核心思想是让每个chirp使用不同的起始频率。具体来说,第 mmm 个chirp的起始频率设置为:
fm=f0+(m−1)Δff_m = f_0 + (m-1)\Delta ffm=f0+(m−1)Δf
其中 Δf\Delta fΔf 是频率步进量。这样,发射信号变成:
st(t^,tm)=exp[j2π(fmt^+μt^22)]s_t(\hat{t}, t_m) = \exp\left[j2\pi\left(f_m \hat{t} + \frac{\mu \hat{t}^2}{2}\right)\right]st(t^,tm)=exp[j2π(fmt^+2μt^2)]
这里我们用 t^\hat{t}t^ 表示快时间(chirp内的时间),tm=(m−1)Tt_m = (m-1)Ttm=(m−1)T 表示慢时间。
当我们对接收信号进行处理时,跳频会在多普勒维度引入一个与距离相关的频移,这个额外的信息维度正是解决耦合问题的关键。
数学推导:跳频如何解耦
让我们详细推导跳频后的信号处理过程。目标的回波信号为:
sr(t^,tm)=exp[j2π(fm(t^−τ)+μ(t^−τ)22)]s_r(\hat{t}, t_m) = \exp\left[j2\pi\left(f_m(\hat{t} - \tau) + \frac{\mu(\hat{t} - \tau)^2}{2}\right)\right]sr(t^,tm)=exp[j2π(fm(t^−τ)+2μ(t^−τ)2)]
其中延迟 τ\tauτ 包含了距离和速度的影响:
τ=2R0c+2vtmc\tau = \frac{2R_0}{c} + \frac{2v t_m}{c}τ=c2R0+c2vtm
混频后的中频信号经过推导可得:
sIF(t^,tm)=exp[j2π(2μR0ct^+2fmvctm+2μvTcmtm+其他项)]s_{IF}(\hat{t}, t_m) = \exp\left[j2\pi\left(\frac{2\mu R_0}{c}\hat{t} + \frac{2f_m v}{c}t_m + \frac{2\mu v T}{c}mt_m + \text{其他项}\right)\right]sIF(t^,tm)=exp[j2π(c2μR0t^+c2fmvtm+c2μvTmtm+其他项)]
这个表达式看起来复杂,但我们可以通过二维傅里叶变换来分析它。对快时间 t^\hat{t}t^ 进行FFT,得到距离维频率:
fIF=2μR0c+2μvtmcf_{IF} = \frac{2\mu R_0}{c} + \frac{2\mu v t_m}{c}fIF=c2μR0+c2μvtm
对慢时间 tmt_mtm 进行FFT,并注意到 fm=f0+tmΔf/Tf_m = f_0 + t_m \Delta f / Tfm=f0+tmΔf/T,得到多普勒频率:
fdo=2f0vc+2ΔfR0cT+2ΔfvtmcTf_{do} = \frac{2f_0 v}{c} + \frac{2\Delta f R_0}{cT} + \frac{2\Delta f v t_m}{cT}fdo=c2f0v+cT2ΔfR0+cT2Δfvtm
这里出现了关键的一项:2ΔfR0cT\frac{2\Delta f R_0}{cT}cT2ΔfR0。这是跳频引入的、与距离成正比的多普勒频移。正是这一项,让我们能够建立起一个可解的方程组。
联立求解:距离和速度的分离
现在我们有两个方程,包含两个未知数 R0R_0R0 和 vvv:
[fIFfdo]=[2μc2μtmc2ΔfcT2fcc][R0v]\begin{bmatrix} f_{IF} \\ f_{do} \end{bmatrix} = \begin{bmatrix} \frac{2\mu}{c} & \frac{2\mu t_m}{c} \\ \frac{2\Delta f}{cT} & \frac{2f_c}{c} \end{bmatrix} \begin{bmatrix} R_0 \\ v \end{bmatrix}[fIFfdo]=[c2μcT2Δfc2μtmc2fc][R0v]
其中 fcf_cfc 是中心频率。这个线性方程组的系数矩阵是可逆的(只要 Δf≠0\Delta f \neq 0Δf=0),因此我们可以唯一地解出:
[R0v]=[2μc2μtmc2ΔfcT2fcc]−1[fIFfdo]\begin{bmatrix} R_0 \\ v \end{bmatrix} = \begin{bmatrix} \frac{2\mu}{c} & \frac{2\mu t_m}{c} \\ \frac{2\Delta f}{cT} & \frac{2f_c}{c} \end{bmatrix}^{-1} \begin{bmatrix} f_{IF} \\ f_{do} \end{bmatrix}[R0v]=[c2μcT2Δfc2μtmc2fc]−1[fIFfdo]
这就实现了距离和速度的解耦测量。
跳频带来的额外好处
除了解决距离-速度耦合问题,跳频技术还带来了一个意想不到的好处:在速度维上的距离分辨能力。考虑两个速度相同但距离略有差异的目标,它们在距离维FFT中可能无法分辨(因为距离差小于 c/(2B)c/(2B)c/(2B)),但由于跳频的存在,它们会在多普勒谱上产生不同的频移:
Δfdo=2Δf⋅ΔRcT\Delta f_{do} = \frac{2\Delta f \cdot \Delta R}{cT}Δfdo=cT2Δf⋅ΔR
只要这个频率差大于多普勒分辨率 1/(MT)1/(MT)1/(MT),我们就能在速度维上将它们区分开。这相当于雷达获得了一种"超分辨"能力,可以分辨的最小距离差为:
ΔRmin=c2MΔf\Delta R_{min} = \frac{c}{2M\Delta f}ΔRmin=2MΔfc
这个分辨率与传统的距离分辨率 c/(2B)c/(2B)c/(2B) 是互补的,为雷达系统提供了更灵活的目标分辨能力。
实际应用中的考虑
在实际的雷达系统设计中,跳频参数的选择需要综合考虑多个因素。频率步进 Δf\Delta fΔf 不能太小,否则解耦效果不明显;也不能太大,否则会增加系统的复杂度和成本。典型的选择是让 Δf\Delta fΔf 与单个chirp的带宽 BBB 相当,这样可以在不显著增加总带宽的情况下实现有效的解耦。chirp数量 MMM 的选择则主要影响速度测量精度和数据率。更多的chirp意味着更好的速度分辨率和信噪比,但也意味着更长的观测时间。在跟踪快速移动目标时,需要在精度和实时性之间找到平衡。信号处理的实现也需要特别注意。由于跳频会在多普勒谱上引入与距离相关的偏移,传统的恒虚警(CFAR)检测算法可能需要修改。一种常见的做法是先进行距离-速度解耦,然后在真实的距离-速度域进行目标检测。
性能分析与验证
从理论分析可以看出,跳频技术并不会改变基本的距离和速度分辨率。距离分辨率仍然由总的扫频带宽决定:
ΔR=c2Bs\Delta R = \frac{c}{2B_s}ΔR=2Bsc
速度分辨率仍然由总的观测时间决定:
Δv=c2MTfc\Delta v = \frac{c}{2MTf_c}Δv=2MTfcc
但跳频确实改变了模糊函数的形状,使得距离和速度的测量更加独立。这在多目标环境中特别有价值,可以避免"鬼影"目标的出现。
附录A:跳频FMCW雷达推导
A.1 混频过程的完整推导
在主文中,我们简化了混频过程的推导。这里给出完整的数学细节。
发射信号的复数形式为:
st(t^,tm)=exp[j2π(fmt^+μt^22)]s_t(\hat{t}, t_m) = \exp\left[j2\pi\left(f_m \hat{t} + \frac{\mu \hat{t}^2}{2}\right)\right]st(t^,tm)=exp[j2π(fmt^+2μt^2)]
其中 fm=f0+(m−1)Δff_m = f_0 + (m-1)\Delta ffm=f0+(m−1)Δf,可以写成:
fm=f0+tmTΔff_m = f_0 + \frac{t_m}{T}\Delta ffm=f0+TtmΔf
这里 tm=(m−1)Tt_m = (m-1)Ttm=(m−1)T 是第 mmm 个chirp的起始时刻。
目标回波信号考虑完整的时变延迟:
τ(t^,tm)=2[R0+v(tm+t^)]c\tau(\hat{t}, t_m) = \frac{2[R_0 + v(t_m + \hat{t})]}{c}τ(t^,tm)=c2[R0+v(tm+t^)]
为了简化分析,我们通常采用"停走停"近似,即在单个chirp内认为目标距离不变:
τ(tm)≈2(R0+v⋅tm)c\tau(t_m) \approx \frac{2(R_0 + v \cdot t_m)}{c}τ(tm)≈c2(R0+v⋅tm)
这个近似在 v⋅T≪R0v \cdot T \ll R_0v⋅T≪R0 时是合理的。
回波信号为:
sr(t^,tm)=A⋅exp[j2π(fm(t^−τ)+μ(t^−τ)22)]s_r(\hat{t}, t_m) = A \cdot \exp\left[j2\pi\left(f_m(\hat{t} - \tau) + \frac{\mu(\hat{t} - \tau)^2}{2}\right)\right]sr(t^,tm)=A⋅exp[j2π(fm(t^−τ)+2μ(t^−τ)2)]
其中 AAA 是包含路径损耗和目标反射系数的复振幅。
混频器输出为发射信号和接收信号的共轭相乘:
sIF(t^,tm)=sr(t^,tm)⋅st∗(t^,tm)s_{IF}(\hat{t}, t_m) = s_r(\hat{t}, t_m) \cdot s_t^*(\hat{t}, t_m)sIF(t^,tm)=sr(t^,tm)⋅st∗(t^,tm)
展开后得到:
sIF=A⋅exp[j2π(fm(t^−τ)+μ(t^−τ)22−fmt^−μt^22)]s_{IF} = A \cdot \exp\left[j2\pi\left(f_m(\hat{t} - \tau) + \frac{\mu(\hat{t} - \tau)^2}{2} - f_m\hat{t} - \frac{\mu\hat{t}^2}{2}\right)\right]sIF=A⋅exp[j2π(fm(t^−τ)+2μ(t^−τ)2−fmt^−2μt^2)]
A.2 相位项的详细展开
让我们逐项展开混频后的相位:
ϕIF=2π[−fmτ+μt^(t^−τ)−μ(t^−τ)22+μ(t^−τ)22−μt^22]\phi_{IF} = 2\pi\left[-f_m\tau + \mu\hat{t}(\hat{t} - \tau) - \frac{\mu(\hat{t} - \tau)^2}{2} + \frac{\mu(\hat{t} - \tau)^2}{2} - \frac{\mu\hat{t}^2}{2}\right]ϕIF=2π[−fmτ+μt^(t^−τ)−2μ(t^−τ)2+2μ(t^−τ)2−2μt^2]
简化后:
ϕIF=2π[−fmτ+μτt^−μτ22]\phi_{IF} = 2\pi\left[-f_m\tau + \mu\tau\hat{t} - \frac{\mu\tau^2}{2}\right]ϕIF=2π[−fmτ+μτt^−2μτ2]
将 τ=2R0c+2vtmc\tau = \frac{2R_0}{c} + \frac{2vt_m}{c}τ=c2R0+c2vtm 和 fm=f0+tmΔfTf_m = f_0 + \frac{t_m\Delta f}{T}fm=f0+TtmΔf 代入:
ϕIF=2π[−(f0+tmΔfT)(2R0c+2vtmc)+2μR0ct^+2μvtmct^−μτ22]\phi_{IF} = 2\pi\left[-\left(f_0 + \frac{t_m\Delta f}{T}\right)\left(\frac{2R_0}{c} + \frac{2vt_m}{c}\right) + \frac{2\mu R_0}{c}\hat{t} + \frac{2\mu v t_m}{c}\hat{t} - \frac{\mu\tau^2}{2}\right]ϕIF=2π[−(f0+TtmΔf)(c2R0+c2vtm)+c2μR0t^+c2μvtmt^−2μτ2]
展开所有项:
ϕIF=2π[−2f0R0c−2f0vtmc−2ΔfR0tmcT−2Δfvtm2cT+2μR0ct^+2μvtmct^−μτ22]\phi_{IF} = 2\pi\left[-\frac{2f_0R_0}{c} - \frac{2f_0vt_m}{c} - \frac{2\Delta f R_0 t_m}{cT} - \frac{2\Delta f v t_m^2}{cT} + \frac{2\mu R_0}{c}\hat{t} + \frac{2\mu v t_m}{c}\hat{t} - \frac{\mu\tau^2}{2}\right]ϕIF=2π[−c2f0R0−c2f0vtm−cT2ΔfR0tm−cT2Δfvtm2+c2μR0t^+c2μvtmt^−2μτ2]
A.3 二维傅里叶变换分析
中频信号可以写成:
sIF(t^,tm)=A⋅exp[jϕIF(t^,tm)]s_{IF}(\hat{t}, t_m) = A \cdot \exp[j\phi_{IF}(\hat{t}, t_m)]sIF(t^,tm)=A⋅exp[jϕIF(t^,tm)]
对快时间 t^\hat{t}t^ 的傅里叶变换:
SIF(ft^,tm)=∫−T/2T/2sIF(t^,tm)exp(−j2πft^t^)dt^S_{IF}(f_{\hat{t}}, t_m) = \int_{-T/2}^{T/2} s_{IF}(\hat{t}, t_m) \exp(-j2\pi f_{\hat{t}} \hat{t}) d\hat{t}SIF(ft^,tm)=∫−T/2T/2sIF(t^,tm)exp(−j2πft^t^)dt^
由于相位中 t^\hat{t}t^ 的系数为 2π(2μR0c+2μvtmc)2\pi\left(\frac{2\mu R_0}{c} + \frac{2\mu v t_m}{c}\right)2π(c2μR0+c2μvtm),峰值出现在:
fIF=2μR0c+2μvtmcf_{IF} = \frac{2\mu R_0}{c} + \frac{2\mu v t_m}{c}fIF=c2μR0+c2μvtm
对慢时间 tmt_mtm 的傅里叶变换更加复杂,因为相位中包含 tmt_mtm 的一次项和二次项。忽略二次项(在 MΔfvT/c≪1M\Delta f v T/c \ll 1MΔfvT/c≪1 的条件下),主要的频率分量为:
fdo=12π∂ϕIF∂tm=2f0vc+2ΔfR0cTf_{do} = \frac{1}{2\pi}\frac{\partial \phi_{IF}}{\partial t_m} = \frac{2f_0 v}{c} + \frac{2\Delta f R_0}{cT}fdo=2π1∂tm∂ϕIF=c2f0v+cT2ΔfR0
这里出现了关键的交叉项 2ΔfR0cT\frac{2\Delta f R_0}{cT}cT2ΔfR0。
A.4 矩阵形式和求逆计算
将两个频率方程写成矩阵形式(取 tmt_mtm 的中点值):
[fIFfdo]=[2μcμ(M−1)Tc2ΔfcT2fcc][R0v]\begin{bmatrix}
f_{IF} \\
f_{do}
\end{bmatrix} = \begin{bmatrix}
\frac{2\mu}{c} & \frac{\mu(M-1)T}{c} \\
\frac{2\Delta f}{cT} & \frac{2f_c}{c}
\end{bmatrix} \begin{bmatrix}
R_0 \\
v
\end{bmatrix}[fIFfdo]=[c2μcT2Δfcμ(M−1)Tc2fc][R0v]
其中 fc=f0+(M−1)Δf2f_c = f_0 + \frac{(M-1)\Delta f}{2}fc=f0+2(M−1)Δf 是中心频率。
系数矩阵的行列式为:
det(A)=2μc⋅2fcc−μ(M−1)Tc⋅2ΔfcT\det(A) = \frac{2\mu}{c} \cdot \frac{2f_c}{c} - \frac{\mu(M-1)T}{c} \cdot \frac{2\Delta f}{cT}det(A)=c2μ⋅c2fc−cμ(M−1)T⋅cT2Δf
=4μfcc2−2μ(M−1)Δfc2= \frac{4\mu f_c}{c^2} - \frac{2\mu(M-1)\Delta f}{c^2}=c24μfc−c22μ(M−1)Δf
=2μc2[2fc−(M−1)Δf]= \frac{2\mu}{c^2}\left[2f_c - (M-1)\Delta f\right]=c22μ[2fc−(M−1)Δf]
=2μc2[2f0+(M−1)Δf−(M−1)Δf]=4μf0c2= \frac{2\mu}{c^2}\left[2f_0 + (M-1)\Delta f - (M-1)\Delta f\right] = \frac{4\mu f_0}{c^2}=c22μ[2f0+(M−1)Δf−(M−1)Δf]=c24μf0
逆矩阵为:
A−1=c24μf0[2fcc−μ(M−1)Tc−2ΔfcT2μc]A^{-1} = \frac{c^2}{4\mu f_0} \begin{bmatrix}
\frac{2f_c}{c} & -\frac{\mu(M-1)T}{c} \\
-\frac{2\Delta f}{cT} & \frac{2\mu}{c}
\end{bmatrix}A−1=4μf0c2[c2fc−cT2Δf−cμ(M−1)Tc2μ]
简化后:
A−1=[cfc2μf0−(M−1)T2f0−cΔf2μf0Tc2f0]A^{-1} = \begin{bmatrix}
\frac{cf_c}{2\mu f_0} & -\frac{(M-1)T}{2f_0} \\
-\frac{c\Delta f}{2\mu f_0 T} & \frac{c}{2f_0}
\end{bmatrix}A−1=[2μf0cfc−2μf0TcΔf−2f0(M−1)T2f0c]
A.5 高阶效应和误差分析
在上述推导中,我们做了几个近似:
-
停走停近似的误差:
实际延迟为 τ(t^)=2[R0+v(tm+t^)]c\tau(\hat{t}) = \frac{2[R_0 + v(t_m + \hat{t})]}{c}τ(t^)=c2[R0+v(tm+t^)]近似误差为:Δτ=2vt^c\Delta\tau = \frac{2v\hat{t}}{c}Δτ=c2vt^
引起的相位误差:Δϕ=2πfmΔτ=4πfmvt^c\Delta\phi = 2\pi f_m \Delta\tau = \frac{4\pi f_m v \hat{t}}{c}Δϕ=2πfmΔτ=c4πfmvt^
当 4πfmvTc<π\frac{4\pi f_m v T}{c} < \pic4πfmvT<π 时,这个误差可以忽略。
-
二次项的影响:
慢时间相位中的二次项 2Δfvtm2cT\frac{2\Delta f v t_m^2}{cT}cT2Δfvtm2 会导致多普勒谱展宽。频谱展宽量:Δfspread=2ΔfvMTcT=2MΔfvc\Delta f_{spread} = \frac{2\Delta f v M T}{cT} = \frac{2M\Delta f v}{c}Δfspread=cT2ΔfvMT=c2MΔfv
当 Δfspread<1MT\Delta f_{spread} < \frac{1}{MT}Δfspread<MT1 时可以忽略。
-
距离走动补偿:
在长相干处理时间内,目标可能移动多个距离单元。距离走动量为:
ΔRwalk=v⋅MT\Delta R_{walk} = v \cdot M TΔRwalk=v⋅MT如果 ΔRwalk>c2B\Delta R_{walk} > \frac{c}{2B}ΔRwalk>2Bc,需要进行距离走动补偿。
A.6 跳频间隔的优化设计
频率步进 Δf\Delta fΔf 的选择需要满足多个约束:
-
解耦条件:矩阵 AAA 必须可逆,即 Δf≠0\Delta f \neq 0Δf=0。
-
避免盲速:当 2ΔfR0cT=k⋅PRF\frac{2\Delta f R_0}{cT} = k \cdot PRFcT2ΔfR0=k⋅PRF (kkk 为整数)时,会出现多普勒模糊。
为避免这种情况:
Δf≠kcT2Rmax\Delta f \neq \frac{kcT}{2R_{\max}}Δf=2RmaxkcT -
最大不模糊速度:考虑多普勒模糊,最大不模糊速度为:
vmax=c4fcT−ΔfRmax2fcTv_{\max} = \frac{c}{4f_c T} - \frac{\Delta f R_{\max}}{2f_c T}vmax=4fcTc−2fcTΔfRmax -
速度维距离分辨率:在速度维可分辨的最小距离差为:
ΔRv−res=c2MΔf\Delta R_{v-\text{res}} = \frac{c}{2M\Delta f}ΔRv−res=2MΔfc为了充分利用这个能力,通常选择:
Δf=c2M⋅ΔRdesired\Delta f = \frac{c}{2M \cdot \Delta R_{desired}}Δf=2M⋅ΔRdesiredc
A.7 信号处理流程的矩阵表示
实际信号处理中,通常采用矩阵运算来提高效率。设采样后的信号矩阵为 S∈CN×M\mathbf{S} \in \mathbb{C}^{N \times M}S∈CN×M,其中 NNN 是快时间采样点数,MMM 是chirp数。
二维FFT可以表示为:
Y=FNSFMH\mathbf{Y} = \mathbf{F}_N \mathbf{S} \mathbf{F}_M^HY=FNSFMH
其中 FN\mathbf{F}_NFN 和 FM\mathbf{F}_MFM 分别是 NNN 点和 MMM 点的DFT矩阵。
跳频引起的相位补偿可以表示为对角矩阵:
P=diag(exp[−j2π2ΔfRncTm])\mathbf{P} = \text{diag}\left(\exp\left[-j2\pi\frac{2\Delta f R_n}{cT}m\right]\right)P=diag(exp[−j2πcT2ΔfRnm])
补偿后的信号为:
Ycomp=Y⊙P\mathbf{Y}_{comp} = \mathbf{Y} \odot \mathbf{P}Ycomp=Y⊙P
其中 ⊙\odot⊙ 表示Hadamard积(逐元素相乘)。
A.8 克拉默-拉奥下界(CRLB)分析
跳频FMCW雷达的参数估计精度可以通过克拉默-拉奥下界来评估。对于距离和速度的联合估计,Fisher信息矩阵为:
J=2SNRN0[∣∂s∂R0∣2Re{∂sH∂R0∂s∂v}Re{∂sH∂v∂s∂R0}∣∂s∂v∣2]\mathbf{J} = \frac{2\text{SNR}}{N_0} \begin{bmatrix} \left|\frac{\partial \mathbf{s}}{\partial R_0}\right|^2 & \text{Re}\left\{\frac{\partial \mathbf{s}^H}{\partial R_0}\frac{\partial \mathbf{s}}{\partial v}\right\} \\ \text{Re}\left\{\frac{\partial \mathbf{s}^H}{\partial v}\frac{\partial \mathbf{s}}{\partial R_0}\right\} & \left|\frac{\partial \mathbf{s}}{\partial v}\right|^2 \end{bmatrix}J=N02SNR∂R0∂s2Re{∂v∂sH∂R0∂s}Re{∂R0∂sH∂v∂s}∂v∂s2
经过推导,距离和速度估计的方差下界为:
var(R^0)≥c28π2SNRB2\text{var}(\hat{R}_0) \geq \frac{c^2}{8\pi^2 \text{SNR} B^2}var(R^0)≥8π2SNRB2c2
var(v^)≥c28π2SNRfc2(MT)2\text{var}(\hat{v}) \geq \frac{c^2}{8\pi^2 \text{SNR} f_c^2 (MT)^2}var(v^)≥8π2SNRfc2(MT)2c2
跳频的引入不会改变这些理论下界,但会改善实际估计器接近理论下界的能力,特别是在多目标环境中。
附录B:跳频技术与DD-MIMO的结合应用
B.1 DD-MIMO雷达基础
分布式数字MIMO(DD-MIMO)雷达是现代雷达技术的重要发展方向。与传统的相控阵雷达不同,MIMO雷达通过多个发射天线同时发射正交波形,多个接收天线同时接收回波,通过信号处理技术实现虚拟孔径的扩展。在DD-MIMO系统中,假设有 NTN_TNT 个发射天线和 NRN_RNR 个接收天线,可以形成 NT×NRN_T \times N_RNT×NR 个虚拟通道。每个虚拟通道对应一个特定的空间位置,相当于在该位置放置了一个虚拟天线。这种技术可以用较少的物理天线实现较大的天线孔径,从而提高角度分辨率。
B.2 跳频DD-MIMO的信号模型
将跳频技术引入DD-MIMO系统,可以同时获得两种技术的优势。完整的信号模型可以表示为:
sIF(t^,tm,n)=exp[j2π(fmτ+μτt^−μτ22+ϕMIMO(n))]s_{IF}(\hat{t}, t_m, n) = \exp\left[j2\pi\left(f_m\tau + \mu\tau\hat{t} - \frac{\mu\tau^2}{2} + \phi_{MIMO}(n)\right)\right]sIF(t^,tm,n)=exp[j2π(fmτ+μτt^−2μτ2+ϕMIMO(n))]
其中 nnn 是虚拟天线编号,ϕMIMO(n)\phi_{MIMO}(n)ϕMIMO(n) 是MIMO引入的相位项:
ϕMIMO(n)=2πλm(dx(n)sinθcosϕ+dz(n)sinθsinϕ)+ϕtx(n)\phi_{MIMO}(n) = \frac{2\pi}{\lambda_m}\left(d_x^{(n)}\sin\theta\cos\phi + d_z^{(n)}\sin\theta\sin\phi\right) + \phi_{tx}^{(n)}ϕMIMO(n)=λm2π(dx(n)sinθcosϕ+dz(n)sinθsinϕ)+ϕtx(n)
这里:
- dx(n)d_x^{(n)}dx(n), dz(n)d_z^{(n)}dz(n) 是第 nnn 个虚拟天线相对于参考点的坐标
- θ\thetaθ, ϕ\phiϕ 是目标的方位角和俯仰角
- ϕtx(n)\phi_{tx}^{(n)}ϕtx(n) 是发射天线移相器的固有相位
- λm=c/fm\lambda_m = c/f_mλm=c/fm 是第 mmm 个chirp的波长
注意到波长 λm\lambda_mλm 随着跳频而变化,这带来了新的信号处理挑战和机遇。
B.3 三维联合处理
在跳频DD-MIMO系统中,接收信号是三维的:快时间(距离)、慢时间(多普勒)和空间(角度)。完整的信号处理需要在这三个维度上进行:
s(t^,tm,n)=∑k=1KAkexp[j2π(2μRkct^+fdo,ktm+ϕMIMO,k(n))]s(\hat{t}, t_m, n) = \sum_{k=1}^{K} A_k \exp\left[j2\pi\left(\frac{2\mu R_k}{c}\hat{t} + f_{do,k}t_m + \phi_{MIMO,k}(n)\right)\right]s(t^,tm,n)=k=1∑KAkexp[j2π(c2μRkt^+fdo,ktm+ϕMIMO,k(n))]
其中 KKK 是目标数量,fdo,kf_{do,k}fdo,k 包含了跳频引入的距离相关项:
fdo,k=2vkf0c+2ΔfRkcTf_{do,k} = \frac{2v_k f_0}{c} + \frac{2\Delta f R_k}{cT}fdo,k=c2vkf0+cT2ΔfRk
B.4 角度估计中的跳频效应
跳频对角度估计的影响主要体现在两个方面:
1. 波长变化引起的相位变化
不同chirp的载频不同,导致波长变化:
λm=cf0+(m−1)Δf\lambda_m = \frac{c}{f_0 + (m-1)\Delta f}λm=f0+(m−1)Δfc
这会影响阵列流形向量:
a(θ,fm)=exp[j2πλmdTu(θ)]\mathbf{a}(\theta, f_m) = \exp\left[j\frac{2\pi}{\lambda_m}\mathbf{d}^T\mathbf{u}(\theta)\right]a(θ,fm)=exp[jλm2πdTu(θ)]
其中 d\mathbf{d}d 是天线位置向量,u(θ)\mathbf{u}(\theta)u(θ) 是方向向量。
2. 角度-多普勒耦合
跳频会在角度维和多普勒维之间引入耦合。对于偏离法线 θ\thetaθ 角度的目标,等效的多普勒频移为:
Δfangle=(m−1)Δfdsinθc\Delta f_{angle} = \frac{(m-1)\Delta f d \sin\theta}{c}Δfangle=c(m−1)Δfdsinθ
这种耦合在大角度扫描时尤为明显。
B.5 扩展的参数估计
在跳频DD-MIMO系统中,需要联合估计四个参数:距离 RRR、速度 vvv、方位角 θ\thetaθ 和俯仰角 ϕ\phiϕ。扩展的方程组为:
[fIFfdoϕxϕz]=[2μcμ(M−1)Tc002ΔfcT2fccΔfdxcTΔfdzcT2πdxλ00102πdzλ0001][Rvsinθcosϕsinθsinϕ]\begin{bmatrix} f_{IF} \\ f_{do} \\ \phi_x \\ \phi_z \end{bmatrix} = \begin{bmatrix} \frac{2\mu}{c} & \frac{\mu(M-1)T}{c} & 0 & 0 \\ \frac{2\Delta f}{cT} & \frac{2f_c}{c} & \frac{\Delta f d_x}{cT} & \frac{\Delta f d_z}{cT} \\ \frac{2\pi d_x}{\lambda_0} & 0 & 1 & 0 \\ \frac{2\pi d_z}{\lambda_0} & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R \\ v \\ \sin\theta\cos\phi \\ \sin\theta\sin\phi \end{bmatrix}fIFfdoϕxϕz=c2μcT2Δfλ02πdxλ02πdzcμ(M−1)Tc2fc000cTΔfdx100cTΔfdz01Rvsinθcosϕsinθsinϕ
这个4×4的系统在一定条件下是可解的,实现了四个参数的解耦估计。
B.6 虚拟孔径合成
DD-MIMO的一个关键优势是虚拟孔径合成。设发射天线位置为 pt(i)\mathbf{p}_t^{(i)}pt(i),接收天线位置为 pr(j)\mathbf{p}_r^{(j)}pr(j),则虚拟天线位置为:
pv(i,j)=pt(i)+pr(j)\mathbf{p}_v^{(i,j)} = \mathbf{p}_t^{(i)} + \mathbf{p}_r^{(j)}pv(i,j)=pt(i)+pr(j)
在跳频系统中,每个频率对应的虚拟阵列响应略有不同:
Am=exp[j2πλmPvTu(θ)]\mathbf{A}_m = \exp\left[j\frac{2\pi}{\lambda_m}\mathbf{P}_v^T\mathbf{u}(\theta)\right]Am=exp[jλm2πPvTu(θ)]
通过适当的补偿,可以将不同频率的响应对齐,实现相干合成:
Acomp=∑m=1MwmAmexp[−j2π(λm−λ0)λ0λmPvTu(θ)]\mathbf{A}_{comp} = \sum_{m=1}^{M} w_m \mathbf{A}_m \exp\left[-j\frac{2\pi(\lambda_m - \lambda_0)}{\lambda_0\lambda_m}\mathbf{P}_v^T\mathbf{u}(\theta)\right]Acomp=m=1∑MwmAmexp[−jλ0λm2π(λm−λ0)PvTu(θ)]
B.7 跳频DD-MIMO的优势分析
1. 提高角度测量精度
跳频引入的频率分集效应可以抑制角度估计中的栅瓣和旁瓣:
PSLRavg=1M∑m=1MPSLR(fm)<PSLR(f0)\text{PSLR}_{avg} = \frac{1}{M}\sum_{m=1}^{M}\text{PSLR}(f_m) < \text{PSLR}(f_0)PSLRavg=M1m=1∑MPSLR(fm)<PSLR(f0)
2. 解决速度模糊
在高PRF的DD-MIMO系统中,速度模糊是一个严重问题。跳频提供的额外信息维度可以解决这个问题:
vtrue=vmeasured+k⋅vmaxv_{true} = v_{measured} + k \cdot v_{max}vtrue=vmeasured+k⋅vmax
其中 kkk 可以通过跳频引入的距离-多普勒耦合关系确定。
3. 抗干扰能力增强
频率捷变使得系统更难被干扰。对于特定频率的干扰,只会影响部分chirp:
SINRavg=Ps1M∑m=1MPn(fm)>PsPn(f0)\text{SINR}_{avg} = \frac{P_s}{\frac{1}{M}\sum_{m=1}^{M}P_n(f_m)} > \frac{P_s}{P_n(f_0)}SINRavg=M1∑m=1MPn(fm)Ps>Pn(f0)Ps
B.8 实现中的关键技术
1. 正交波形设计
在跳频DD-MIMO中,需要保证不同发射天线的波形在所有频率上都保持正交性。一种方法是使用相位编码:
si(t,m)=exp[j2π(fmt+μt22+ϕi(m))]s_i(t, m) = \exp\left[j2\pi\left(f_m t + \frac{\mu t^2}{2} + \phi_i(m)\right)\right]si(t,m)=exp[j2π(fmt+2μt2+ϕi(m))]
其中 ϕi(m)=2π(i−1)(m−1)/NT\phi_i(m) = 2\pi(i-1)(m-1)/N_Tϕi(m)=2π(i−1)(m−1)/NT 保证了正交性。
2. 校准和补偿
由于跳频导致的波长变化,需要对每个频率进行阵列校准:
Cm=diag[exp(jϕcal(1)(fm)),…,exp(jϕcal(N)(fm))]\mathbf{C}_m = \text{diag}\left[\exp(j\phi_{cal}^{(1)}(f_m)), \ldots, \exp(j\phi_{cal}^{(N)}(f_m))\right]Cm=diag[exp(jϕcal(1)(fm)),…,exp(jϕcal(N)(fm))]
3. 联合参数估计算法
实际实现中,通常采用迭代算法:
- 步骤1:固定角度,估计距离和速度
- 步骤2:固定距离和速度,估计角度
- 步骤3:重复直到收敛
B.9 性能界限分析
跳频DD-MIMO系统的克拉默-拉奥下界(CRLB)可以表示为:
J4×4=2SNRN0[JRRJRvJRθJRϕJvRJvvJvθJvϕJθRJθvJθθJθϕJϕRJϕvJϕθJϕϕ]\mathbf{J}_{4×4} = \frac{2\text{SNR}}{N_0} \begin{bmatrix} J_{RR} & J_{Rv} & J_{R\theta} & J_{R\phi} \\ J_{vR} & J_{vv} & J_{v\theta} & J_{v\phi} \\ J_{\theta R} & J_{\theta v} & J_{\theta\theta} & J_{\theta\phi} \\ J_{\phi R} & J_{\phi v} & J_{\phi\theta} & J_{\phi\phi} \end{bmatrix}J4×4=N02SNRJRRJvRJθRJϕRJRvJvvJθvJϕvJRθJvθJθθJϕθJRϕJvϕJθϕJϕϕ
其中各元素涉及信号对各参数的偏导数。跳频的引入增加了非对角元素的耦合,但同时也提高了矩阵的条件数,使得联合估计更加稳定。