汽车毫米波雷达近场效应信号处理

汽车毫米波雷达近场效应信号处理

近场效应

汽车毫米波雷达在短距离探测时面临着一个根本性的物理挑战:当目标距离小于特定临界值时,传统的平面波假设不再成立,电磁波呈现出明显的球面波特性。这种现象被称为近场效应

从夫琅禾费距离理解近场与远场的分界

远场判据的物理意义与数学推导

判断雷达工作在近场还是远场的核心准则是夫琅禾费距离(Fraunhofer distance),其经典公式为 Rff=2D2λR_{ff} = \frac{2D^2}{\lambda}Rff=λ2D2,其中DDD为天线的最大孔径尺寸,λ\lambdaλ为工作波长。这个公式的推导基于相位误差准则:当天线孔径边缘与中心到观测点的路径差引起的相位误差达到π/8\pi/8π/8(22.5度)时,我们认为达到了近场与远场的分界。

从几何关系出发,设观测点距离天线中心为rrr,天线孔径边缘到观测点的距离为r1r_1r1,利用勾股定理可得:

r1=r2+(D2)2r_1 = \sqrt{r^2 + \left(\frac{D}{2}\right)^2}r1=r2+(2D)2

对于大距离rrr,通过泰勒展开可以近似为:

r1≈r+(D/2)22rr_1 \approx r + \frac{(D/2)^2}{2r}r1r+2r(D/2)2

相位差:

Δϕ=k(r1−r)=πD24rλ\Delta\phi = k(r_1 - r) = \frac{\pi D^2}{4r\lambda}Δϕ=k(r1r)=4rλπD2

当限制相位差为π/8\pi/8π/8时,就得到了夫琅禾费距离公式。

对于77GHz汽车雷达,波长约为3.9毫米,一个10厘米×10厘米的天线阵列,其夫琅禾费距离约为5.13米;而5厘米×5厘米的阵列,夫琅禾费距离仅为1.28米。这意味着在停车辅助等近距离应用中,雷达几乎完全工作在近场区域。

球面波与平面波模型的本质差异

在远场区域,电磁波可以近似为平面波,其数学表达式为:

E(z,t)=Ae−jkz+jωtE(z,t) = A e^{-jkz + j\omega t}E(z,t)=Aejkz+t

振幅恒定,相位随距离线性变化。而在近场,必须考虑球面波特性,表达式变为:

E(r,θ,ϕ,t)=Are−jkr+jωtE(r,\theta,\phi,t) = \frac{A}{r}e^{-jkr + j\omega t}E(r,θ,ϕ,t)=rAejkr+t

不仅包含1/r1/r1/r的振幅衰减因子,相位项也变为与径向距离rrr相关。

这种差异带来的影响是深刻的。想象一下,如果把电磁波比作水波,远场就像是海浪,波前基本平行;而近场则像是向池塘中投入石子产生的涟漪,波前呈现明显的曲率。这种曲率导致不同位置的天线元素接收到的信号相位关系发生变化,传统基于平面波假设的信号处理算法将产生显著误差。

近场效应对信号处理的深层影响

距离-多普勒处理中的畸变机理

在汽车雷达的距离-多普勒处理中,近场效应引入了复杂的耦合关系。传统的FFT处理假设目标在相干处理间隔内保持固定距离,但对于高速运动的近场目标,会产生距离徙动现象。这种现象可以理解为:在雷达观测的短时间内,快速接近的车辆其反射信号会"跨越"多个距离单元,导致能量分散,就像拍照时的运动模糊一样。

距离徙动量:

ΔR=vr⋅TCPI\Delta R = v_r \cdot T_{CPI}ΔR=vrTCPI

其中vrv_rvr为径向速度,TCPIT_{CPI}TCPI为相干处理间隔。更复杂的是,近场条件下的多普勒频移不再是简单的线性关系,而是包含了二阶修正项:

fd=2vrf0c⋅(1+vr22c2R)f_d = \frac{2v_r f_0}{c} \cdot \left(1 + \frac{v_r^2}{2c^2R}\right)fd=c2vrf0(1+2c2Rvr2)

这个额外的二阶项虽然很小,但在高精度应用中不可忽略。

Keystone变换:消除距离-多普勒耦合的巧妙方法

Keystone变换通过时间轴的巧妙重标定来消除距离-多普勒耦合,其核心思想是:

τ′=τ⋅f0+fkf0\tau' = \tau \cdot \frac{f_0 + f_k}{f_0}τ=τf0f0+fk

其中fkf_kfk为快时间频率。这种变换可以形象地理解为:如果把雷达回波看作一幅二维图像,距离徙动就像是图像的倾斜,Keystone变换相当于对图像进行"矫正",使得原本倾斜的轨迹变为垂直,从而恢复目标的真实位置。

变换后的信号从包含耦合项的复杂形式简化为标准形式,距离和速度信息得以解耦。更先进的变量多普勒起始点Keystone变换(VDSPKT)进一步优化了这一过程,通过自适应调整多普勒起始点,在保持补偿效果的同时将计算复杂度降低约50%。

后向投影算法:从原理回归的精确重构

后向投影算法(BPA)是一种从物理原理出发的精确成像方法,其基本思想是将每个接收信号"投影"回其可能的源位置。算法的核心公式为:

I(x,y,z)=∑n∑ks(tn,τnk)⋅A(x,y,z,xn,yn,zn)I(x,y,z) = \sum_n \sum_k s(t_n, \tau_{nk}) \cdot A(x,y,z,x_n,y_n,z_n)I(x,y,z)=nks(tn,τnk)A(x,y,z,xn,yn,zn)

这里每个像素点的值都是所有可能贡献的相干叠加。可以把这个过程想象成考古学家根据多个角度的X光片重建文物的三维结构——每个测量都提供了部分信息,通过正确的"投影"和叠加,最终重构出完整的图像。

BPA的优势在于能够精确处理任意的天线运动和复杂的波前曲率,特别适合近场成像。但其计算复杂度高达O(N4)O(N^4)O(N4),因此衍生出了快速因子分解后向投影(FFBPA),通过分级处理将复杂度降至O(N2log⁡N)O(N^2 \log N)O(N2logN),在保持精度的同时大幅提升了效率。

MIMO雷达在近场的独特挑战与解决方案

虚拟阵列概念的近场修正

MIMO雷达通过MMM个发射天线和NNN个接收天线形成M×NM \times NM×N个虚拟天线,这个概念在远场条件下运作良好。但在近场,虚拟阵列的等效性受到挑战。虚拟天线位置计算为发射天线位置与接收天线位置的矢量和,但近场的球面波特性使得不同虚拟元素看到的波前曲率不同。

近场条件下的导向矢量需要从简单的线性相位关系:

a(θ)=[1,e−jπdsin⁡θ/λ,e−j2πdsin⁡θ/λ,…]T\mathbf{a}(\theta) = \left[1, e^{-j\pi d\sin\theta/\lambda}, e^{-j2\pi d\sin\theta/\lambda}, \ldots\right]^Ta(θ)=[1,edsinθ/λ,ej2πdsinθ/λ,]T

修正为考虑实际距离的形式:

a(r,θ)=[1,e−j2π(R1−R0)/λ,e−j2π(R2−R0)/λ,…]T\mathbf{a}(r,\theta) = \left[1, e^{-j2\pi(R_1-R_0)/\lambda}, e^{-j2\pi(R_2-R_0)/\lambda}, \ldots\right]^Ta(r,θ)=[1,ej2π(R1R0)/λ,ej2π(R2R0)/λ,]T

其中RiR_iRi需要通过精确的几何计算获得。这种修正在角度估计算法如MUSIC和ESPRIT中尤为重要。

不同MIMO配置的性能权衡

时分复用MIMO(TDM-MIMO)实现简单但信噪比较低,适合成本敏感的应用。二进制相位调制MIMO(BPM-MIMO)通过同时发射获得10log⁡10(NTX)10\log_{10}(N_{TX})10log10(NTX) dB的信噪比增益,但解码复杂度增加。多普勒分频复用MIMO(DDM-MIMO)频谱效率最高,但需要处理多普勒模糊问题。在近场应用中,BPM-MIMO因其较高的信噪比和适中的复杂度成为优选方案。

附录:关键算法的详细数学推导

A. 近场球面波传播模型的完整推导

考虑一个位于原点的点源天线,在球坐标系(r,θ,ϕ)(r, \theta, \phi)(r,θ,ϕ)中,时谐电磁场的波动方程为:

∇2E+k2E=0\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 02E+k2E=0

其中k=2π/λk = 2\pi/\lambdak=2π/λ为波数。对于球面波,电场的一般解可以写成:

E(r,θ,ϕ,t)=1r∑n=0∞∑m=−nn[anmhn(1)(kr)+bnmhn(2)(kr)]Ynm(θ,ϕ)ejωt\mathbf{E}(r,\theta,\phi,t) = \frac{1}{r}\sum_{n=0}^{\infty}\sum_{m=-n}^{n} \left[a_{nm}h_n^{(1)}(kr) + b_{nm}h_n^{(2)}(kr)\right]Y_n^m(\theta,\phi)e^{j\omega t}E(r,θ,ϕ,t)=r1n=0m=nn[anmhn(1)(kr)+bnmhn(2)(kr)]Ynm(θ,ϕ)et

其中hn(1)h_n^{(1)}hn(1)hn(2)h_n^{(2)}hn(2)分别为第一类和第二类球汉克尔函数,YnmY_n^mYnm为球谐函数。

对于向外传播的波,只保留hn(2)h_n^{(2)}hn(2)项。在远场条件下(kr≫1)(kr \gg 1)(kr1),球汉克尔函数可以近似为:

hn(2)(kr)≈(−j)n+1e−jkrkrh_n^{(2)}(kr) \approx (-j)^{n+1}\frac{e^{-jkr}}{kr}hn(2)(kr)(j)n+1krejkr

这导出了熟悉的e−jkrr\frac{e^{-jkr}}{r}rejkr形式。但在近场,必须保留汉克尔函数的完整形式。对于最低阶项(n=0)(n=0)(n=0)

h0(2)(kr)=−je−jkrkrh_0^{(2)}(kr) = -j\frac{e^{-jkr}}{kr}h0(2)(kr)=jkrejkr

展开为级数:

h0(2)(kr)=−j1kr[1−jkr−(kr)22!+j(kr)33!+…]h_0^{(2)}(kr) = -j\frac{1}{kr}\left[1 - jkr - \frac{(kr)^2}{2!} + j\frac{(kr)^3}{3!} + \ldots\right]h0(2)(kr)=jkr1[1jkr2!(kr)2+j3!(kr)3+]

这揭示了近场相位的非线性特性。相位误差相对于线性近似为:

Δϕ=arg⁡[h0(2)(kr)]−(−kr)=arctan⁡(1kr)\Delta\phi = \arg\left[h_0^{(2)}(kr)\right] - (-kr) = \arctan\left(\frac{1}{kr}\right)Δϕ=arg[h0(2)(kr)](kr)=arctan(kr1)

kr<10kr < 10kr<10时,这个误差变得显著,这就是近场区域的物理判据。

B. Keystone变换的严格数学推导

考虑线性调频连续波(LFMCW)雷达,发射信号为:

st(t)=exp⁡[j2π(f0t+K2t2)]s_t(t) = \exp\left[j2\pi\left(f_0t + \frac{K}{2}t^2\right)\right]st(t)=exp[j2π(f0t+2Kt2)]

其中KKK为调频斜率。对于距离R(t)=R0+vrtR(t) = R_0 + v_rtR(t)=R0+vrt的运动目标,接收信号为:

sr(t,tm)=exp⁡[j2π(f0(t−τ(tm))+K2(t−τ(tm))2)]s_r(t,t_m) = \exp\left[j2\pi\left(f_0(t-\tau(t_m)) + \frac{K}{2}(t-\tau(t_m))^2\right)\right]sr(t,tm)=exp[j2π(f0(tτ(tm))+2K(tτ(tm))2)]

其中τ(tm)=2R(tm)/c\tau(t_m) = 2R(t_m)/cτ(tm)=2R(tm)/ctmt_mtm为慢时间。

混频后的中频信号:

sIF(t,tm)=exp⁡[j2π(2KR(tm)ct+2f0R(tm)c−2KR2(tm)c2)]s_{IF}(t,t_m) = \exp\left[j2\pi\left(\frac{2KR(t_m)}{c}t + \frac{2f_0R(t_m)}{c} - \frac{2K R^2(t_m)}{c^2}\right)\right]sIF(t,tm)=exp[j2π(c2KR(tm)t+c2f0R(tm)c22KR2(tm))]

对快时间进行傅里叶变换:

SIF(f,tm)=∫sIF(t,tm)e−j2πftdtS_{IF}(f,t_m) = \int s_{IF}(t,t_m)e^{-j2\pi ft}dtSIF(f,tm)=sIF(t,tm)ej2πftdt

得到:

SIF(f,tm)=δ(f−2KR(tm)c)exp⁡[j2π2f0R(tm)c]S_{IF}(f,t_m) = \delta\left(f - \frac{2KR(t_m)}{c}\right) \exp\left[j2\pi\frac{2f_0R(t_m)}{c}\right]SIF(f,tm)=δ(fc2KR(tm))exp[j2πc2f0R(tm)]

这里可以看到距离和多普勒的耦合:频率fff与时变的R(tm)R(t_m)R(tm)相关。

Keystone变换的核心思想是通过变量替换消除这种耦合。定义新的时间变量:

tm′=tm⋅f0+ff0t_m' = t_m \cdot \frac{f_0 + f}{f_0}tm=tmf0f0+f

在新坐标系下,距离函数变为:

R′(tm′)=R0+vrtm′⋅f0f0+fR'(t_m') = R_0 + v_r t_m' \cdot \frac{f_0}{f_0 + f}R(tm)=R0+vrtmf0+ff0

代入后,相位项变为:

ϕ=2π[2f0R0c+2fR0c+2f0vrtm′c]\phi = 2\pi\left[\frac{2f_0R_0}{c} + \frac{2fR_0}{c} + \frac{2f_0v_rt_m'}{c}\right]ϕ=2π[c2f0R0+c2fR0+c2f0vrtm]

第一项是常数相位,第二项只与快时间频率fff相关(对应固定距离),第三项只与慢时间tm′t_m'tm相关(对应多普勒)。这样实现了距离和多普勒的完全解耦。

C. 后向投影算法的格林函数推导

后向投影算法基于格林函数理论。考虑标量波动方程:

(∇2−1c2∂2∂t2)u(r,t)=−ρ(r,t)\left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)u(\mathbf{r},t) = -\rho(\mathbf{r},t)(2c21t22)u(r,t)=ρ(r,t)

其中ρ(r,t)\rho(\mathbf{r},t)ρ(r,t)为源函数。格林函数G(r,t∣r′,t′)G(\mathbf{r},t|\mathbf{r}',t')G(r,tr,t)满足:

(∇2−1c2∂2∂t2)G=−δ(r−r′)δ(t−t′)\left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)G = -\delta(\mathbf{r}-\mathbf{r}')\delta(t-t')(2c21t22)G=δ(rr)δ(tt)

自由空间格林函数为:

G(r,t∣r′,t′)=δ(t−t′−∣r−r′∣/c)4π∣r−r′∣G(\mathbf{r},t|\mathbf{r}',t') = \frac{\delta(t-t'-|\mathbf{r}-\mathbf{r}'|/c)}{4\pi|\mathbf{r}-\mathbf{r}'|}G(r,tr,t)=4πrrδ(ttrr∣/c)

利用格林函数,散射场可以表示为:

us(r,t)=∫∫G(r,t∣r′,t′)ρ(r′,t′)dr′dt′u_s(\mathbf{r},t) = \int\int G(\mathbf{r},t|\mathbf{r}',t')\rho(\mathbf{r}',t')d\mathbf{r}'dt'us(r,t)=∫∫G(r,tr,t)ρ(r,t)drdt

对于雷达成像,源函数与目标反射率σ(r)\sigma(\mathbf{r})σ(r)相关:

ρ(r′,t′)=σ(r′)ui(r′,t′)\rho(\mathbf{r}',t') = \sigma(\mathbf{r}')u_i(\mathbf{r}',t')ρ(r,t)=σ(r)ui(r,t)

其中uiu_iui为入射场。后向投影通过相干叠加所有可能的传播路径重构σ(r)\sigma(\mathbf{r})σ(r)

σ^(r)=∫∫us(rR,t)⋅G∗(rR,t∣r,t−τ)⋅w(rT,rR,r)drRdt\hat{\sigma}(\mathbf{r}) = \int\int u_s(\mathbf{r}_R,t) \cdot G^*(\mathbf{r}_R,t|\mathbf{r},t-\tau) \cdot w(\mathbf{r}_T,\mathbf{r}_R,\mathbf{r})d\mathbf{r}_Rdtσ^(r)=∫∫us(rR,t)G(rR,tr,tτ)w(rT,rR,r)drRdt

其中rT\mathbf{r}_TrTrR\mathbf{r}_RrR分别为发射和接收天线位置,τ=(∣r−rT∣+∣r−rR∣)/c\tau = (|\mathbf{r}-\mathbf{r}_T| + |\mathbf{r}-\mathbf{r}_R|)/cτ=(rrT+rrR)/c为双程传播延迟,www为加权函数。

D. MIMO雷达虚拟阵列的近场相位修正

考虑一个MMMNNN收的MIMO雷达系统,发射天线位于rTm\mathbf{r}_{T_m}rTm,接收天线位于rRn\mathbf{r}_{R_n}rRn。对于位于rp\mathbf{r}_prp的点目标,信号传播路径长度为:

Lmn=∣rp−rTm∣+∣rp−rRn∣L_{mn} = |\mathbf{r}_p - \mathbf{r}_{T_m}| + |\mathbf{r}_p - \mathbf{r}_{R_n}|Lmn=rprTm+rprRn

在远场条件下,使用平面波近似:

Lmn≈2rp−r^p⋅(rTm+rRn)L_{mn} \approx 2r_p - \hat{\mathbf{r}}_p \cdot (\mathbf{r}_{T_m} + \mathbf{r}_{R_n})Lmn2rpr^p(rTm+rRn)

其中r^p=rp/∣rp∣\hat{\mathbf{r}}_p = \mathbf{r}_p/|\mathbf{r}_p|r^p=rp/∣rp为单位方向矢量。这导出了虚拟阵列元素位置:

rVmn=rTm+rRn2\mathbf{r}_{V_{mn}} = \frac{\mathbf{r}_{T_m} + \mathbf{r}_{R_n}}{2}rVmn=2rTm+rRn

但在近场,必须考虑完整的距离公式。利用泰勒展开:

∣rp−rTm∣=rp1−2rp⋅rTmrp2+∣rTm∣2rp2|\mathbf{r}_p - \mathbf{r}_{T_m}| = r_p\sqrt{1 - 2\frac{\mathbf{r}_p \cdot \mathbf{r}_{T_m}}{r_p^2} + \frac{|\mathbf{r}_{T_m}|^2}{r_p^2}}rprTm=rp12rp2rprTm+rp2rTm2

展开到二阶项:

∣rp−rTm∣≈rp−r^p⋅rTm+∣rTm∣2−(r^p⋅rTm)22rp|\mathbf{r}_p - \mathbf{r}_{T_m}| \approx r_p - \hat{\mathbf{r}}_p \cdot \mathbf{r}_{T_m} + \frac{|\mathbf{r}_{T_m}|^2 - (\hat{\mathbf{r}}_p \cdot \mathbf{r}_{T_m})^2}{2r_p}rprTmrpr^prTm+2rprTm2(r^prTm)2

相位修正项为:

Δϕmn=k[∣rTm∣2−(r^p⋅rTm)22rp+∣rRn∣2−(r^p⋅rRn)22rp]\Delta\phi_{mn} = k\left[\frac{|\mathbf{r}_{T_m}|^2 - (\hat{\mathbf{r}}_p \cdot \mathbf{r}_{T_m})^2}{2r_p} + \frac{|\mathbf{r}_{R_n}|^2 - (\hat{\mathbf{r}}_p \cdot \mathbf{r}_{R_n})^2}{2r_p}\right]Δϕmn=k[2rprTm2(r^prTm)2+2rprRn2(r^prRn)2]

这个修正项与目标距离rpr_prp成反比,在近场变得显著。

E. 距离徙动补偿的分数阶傅里叶变换方法

分数阶傅里叶变换(FrFT)提供了一种优雅的距离徙动补偿方法。定义α\alphaα阶FrFT为:

Fα[f(t)](u)=1−jcot⁡α2π∫f(t)exp⁡[jt2+u22cot⁡α−jutcsc⁡α]dtF_\alpha[f(t)](u) = \sqrt{\frac{1-j\cot\alpha}{2\pi}} \int f(t)\exp\left[j\frac{t^2+u^2}{2}\cot\alpha - jut\csc\alpha\right]dtFα[f(t)](u)=2π1jcotαf(t)exp[j2t2+u2cotαjutcscα]dt

对于线性调频信号s(t)=exp⁡(jπKt2)s(t) = \exp(j\pi Kt^2)s(t)=exp(Kt2),其α\alphaα阶FrFT在α=arctan⁡(2πK)\alpha = \arctan(2\pi K)α=arctan(2πK)时达到最大聚焦。

对于存在距离徙动的雷达信号:

s(t,tm)=exp⁡[j2π(fct+Kt2+2vrcf0tm+2vrKcttm)]s(t,t_m) = \exp\left[j2\pi\left(f_ct + Kt^2 + \frac{2v_r}{c}f_0t_m + \frac{2v_r K}{c}tt_m\right)\right]s(t,tm)=exp[j2π(fct+Kt2+c2vrf0tm+c2vrKttm)]

最后一项2vrKcttm\frac{2v_r K}{c}tt_mc2vrKttm造成了距离-多普勒耦合。通过选择合适的FrFT阶数:

αopt=arctan⁡(2πK(1+2vrtmc))\alpha_{opt} = \arctan\left(2\pi K\left(1 + \frac{2v_r t_m}{c}\right)\right)αopt=arctan(2πK(1+c2vrtm))

可以实现自适应的徙动补偿。FrFT的优势在于它保持了信号的能量集中特性,避免了传统插值方法的能量损失。

F. 近场多径效应的统计建模

近场环境中的多径效应可以用随机场模型描述。接收信号为:

y(t)=∑i=1Lαis(t−τi)+n(t)y(t) = \sum_{i=1}^{L} \alpha_i s(t-\tau_i) + n(t)y(t)=i=1Lαis(tτi)+n(t)

其中LLL为多径数量,αi\alpha_iαiτi\tau_iτi分别为第iii条路径的复增益和延迟。

在近场,路径增益遵循莱斯分布:

p(α)=ασ2exp⁡(−α2+A22σ2)I0(αAσ2)p(\alpha) = \frac{\alpha}{\sigma^2}\exp\left(-\frac{\alpha^2+A^2}{2\sigma^2}\right)I_0\left(\frac{\alpha A}{\sigma^2}\right)p(α)=σ2αexp(2σ2α2+A2)I0(σ2αA)

其中AAA为直射路径幅度,I0I_0I0为修正贝塞尔函数。莱斯因子K=A2/(2σ2)K = A^2/(2\sigma^2)K=A2/(2σ2)表征了直射与散射功率比。

路径延迟的概率密度函数为:

p(τ)=1τ0exp⁡(−ττ0)u(τ)p(\tau) = \frac{1}{\tau_0}\exp\left(-\frac{\tau}{\tau_0}\right)u(\tau)p(τ)=τ01exp(τ0τ)u(τ)

其中τ0\tau_0τ0为均方根延迟扩展。

利用最大似然估计,可以得到多径参数的估计:

θ^=arg⁡max⁡θln⁡p(y∣θ)\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \ln p(\mathbf{y}|\boldsymbol{\theta})θ^=argθmaxlnp(yθ)

其中θ=[α1,τ1,…,αL,τL]T\boldsymbol{\theta} = [\alpha_1, \tau_1, \ldots, \alpha_L, \tau_L]^Tθ=[α1,τ1,,αL,τL]T

通过期望最大化(EM)算法迭代求解:

E步:计算期望对数似然函数
Q(θ∣θ(k))=Ez∣y,θ(k)[ln⁡p(y,z∣θ)]Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(k)}) = E_{\mathbf{z}|\mathbf{y},\boldsymbol{\theta}^{(k)}}[\ln p(\mathbf{y},\mathbf{z}|\boldsymbol{\theta})]Q(θθ(k))=Ezy,θ(k)[lnp(y,zθ)]

M步:最大化期望
θ(k+1)=arg⁡max⁡θQ(θ∣θ(k))\boldsymbol{\theta}^{(k+1)} = \arg\max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(k)})θ(k+1)=argθmaxQ(θθ(k))

这种统计方法能够有效分离直射和多径分量,提高近场检测精度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值