77GHz车载毫米波雷达时变信道衰落特性

77GHz车载毫米波雷达时变信道衰落特性

引言

77GHz毫米波雷达已成为现代汽车高级驾驶辅助系统(ADAS)和自动驾驶技术的核心传感器。在时变信道环境中,该频段雷达面临着快衰落、慢衰落、选择性衰落和相关衰落等多重挑战

77GHz频段的电磁波传播基础

在研究衰落特性之前,首先需要理解77GHz电磁波的基本传播特性。该频段对应的波长λ=c/f=3×108/(77×109)=3.896\lambda = c/f = 3\times10^8/(77\times10^9) = 3.896λ=c/f=3×108/(77×109)=3.896毫米,这一毫米级波长赋予了77GHz雷达独特的传播特性。在标准大气条件下,77GHz频段的大气吸收系数约为0.15 dB/km,相比60GHz氧气吸收峰和95GHz水汽吸收峰,该频段处于大气传播窗口,适合车载雷达应用。

自由空间路径损耗遵循Friis传输公式:

PL(d)=20log⁡10(4πdλ)PL(d) = 20\log_{10}\left(\frac{4\pi d}{\lambda}\right)PL(d)=20log10(λ4πd)

在77GHz频段,每增加一倍距离,路径损耗增加6dB。然而在实际车载环境中,路径损耗指数通常在2.7到3.5之间,这是由于地面反射、建筑物散射等因素的综合影响。相比24GHz频段,77GHz具有显著的技术优势:更高的距离分辨率(理论可达3.75cm)、更小的天线尺寸(相同增益下缩小70%)以及更强的方向性。

快衰落的物理机理与数学建模

快衰落是由多径传播引起的小尺度衰落现象,其变化周期与载波波长相当。在车载环境中,来自地面、车辆、建筑物的反射信号在接收端相干叠加,产生建设性或破坏性干涉,导致接收信号强度的快速起伏。

当无直射路径存在时,接收信号可表示为多个散射分量的叠加:

r(t)=∑i=1Naiexp⁡(jϕi)=x(t)+jy(t)r(t) = \sum_{i=1}^{N} a_i\exp(j\phi_i) = x(t) + jy(t)r(t)=i=1Naiexp(jϕi)=x(t)+jy(t)

根据中心极限定理,当散射路径数NNN趋于无穷大且各分量相互独立时,实部x(t)x(t)x(t)和虚部y(t)y(t)y(t)均服从均值为零、方差为σ2\sigma^2σ2的高斯分布。信号包络R=∣r(t)∣=x2+y2R = |r(t)| = \sqrt{x^2 + y^2}R=r(t)=x2+y2的概率密度函数为瑞利分布:

fR(r)=rσ2exp⁡(−r22σ2),r≥0f_R(r) = \frac{r}{\sigma^2}\exp\left(-\frac{r^2}{2\sigma^2}\right), \quad r \geq 0fR(r)=σ2rexp(2σ2r2),r0

当存在直射路径时,信号模型修正为:

r(t)=Aexp⁡(jθ)+∑i=1Naiexp⁡(jϕi)r(t) = A\exp(j\theta) + \sum_{i=1}^{N} a_i\exp(j\phi_i)r(t)=Aexp(jθ)+i=1Naiexp(jϕi)

其中AAA为直射径振幅。此时包络服从莱斯分布:

fR(r)=rσ2exp⁡(−r2+A22σ2)I0(Arσ2)f_R(r) = \frac{r}{\sigma^2}\exp\left(-\frac{r^2+A^2}{2\sigma^2}\right)I_0\left(\frac{Ar}{\sigma^2}\right)fR(r)=σ2rexp(2σ2r2+A2)I0(σ2Ar)

其中I0I_0I0为第一类零阶修正贝塞尔函数。莱斯因子K=A2/2σ2K = A^2/2\sigma^2K=A2/2σ2表征直射径功率与散射径功率之比。

最新研究表明,对于77GHz毫米波信道,双波加散射功率(TWDP)模型比传统瑞利/莱斯模型更准确。TWDP模型考虑两个非起伏镜面分量:

rcomplex=V1ejϕ1+V2ejϕ2+X+jYr_{complex} = V_1e^{j\phi_1} + V_2e^{j\phi_2} + X + jYrcomplex=V1ejϕ1+V2ejϕ2+X+jY

其中V1V_1V1V2V_2V2为镜面分量幅度,XXXYYY为高斯散射分量。该模型通过K因子和Δ\DeltaΔ参数共同描述信道特性。

慢衰落与大尺度路径损耗

慢衰落主要由障碍物阴影效应引起,其变化尺度远大于载波波长。路径损耗模型可表示为:

PL(d)[dB]=PL(d0)+10n×log⁡10(dd0)+XσPL(d)[dB] = PL(d_0) + 10n \times \log_{10}\left(\frac{d}{d_0}\right) + X_\sigmaPL(d)[dB]=PL(d0)+10n×log10(d0d)+Xσ

其中PL(d0)PL(d_0)PL(d0)为参考距离处的路径损耗,nnn为路径损耗指数,Xσ∼N(0,σ2)X_\sigma \sim \mathcal{N}(0,\sigma^2)XσN(0,σ2)为对数正态分布的阴影衰落分量。

对数正态分布的概率密度函数为:

f(x)=1xσ2πexp⁡(−(ln⁡(x)−μ)22σ2),x>0f(x) = \frac{1}{x\sigma\sqrt{2\pi}}\exp\left(-\frac{(\ln(x)-\mu)^2}{2\sigma^2}\right), \quad x > 0f(x)=xσ2π1exp(2σ2(ln(x)μ)2),x>0

在77GHz频段,城市环境的路径损耗指数通常在2.7-3.5之间,阴影衰落标准差约为8dB。

选择性衰落的三维特性

频率选择性衰落

频率选择性衰落源于多径时延扩展。信道的频率相关函数:

RH(Δf)=E[H(f1)H∗(f1+Δf)]R_H(\Delta f) = E[H(f_1)H^*(f_1+\Delta f)]RH(Δf)=E[H(f1)H(f1+Δf)]

对于指数功率时延谱:

P(τ)=1τrmsexp⁡(−ττrms)P(\tau) = \frac{1}{\tau_{rms}}\exp\left(-\frac{\tau}{\tau_{rms}}\right)P(τ)=τrms1exp(τrmsτ)

相干带宽定义为:

Bc≈15τrmsB_c \approx \frac{1}{5\tau_{rms}}Bc5τrms1

时间选择性衰落

时间选择性衰落由多普勒效应引起。多普勒频移:

fd=vcos⁡(θ)fccf_d = \frac{v \cos(\theta) f_c}{c}fd=cvcos(θ)fc

对于77GHz载波,每1m/s的径向速度产生约514Hz的多普勒频移。相干时间:

Tc≈0.423fd,maxT_c \approx \frac{0.423}{f_{d,max}}Tcfd,max0.423

Jakes多普勒功率谱:

S(f)=1πfd,max1−(ffd,max)2S(f) = \frac{1}{\pi f_{d,max}\sqrt{1-\left(\frac{f}{f_{d,max}}\right)^2}}S(f)=πfd,max1(fd,maxf)21

空间选择性衰落

空间选择性衰落反映了信道在不同空间位置的衰落特性差异。拉普拉斯角度扩展模型:

P(θ)=2σθexp⁡(−2∣θ−θ0∣σθ)P(\theta) = \frac{\sqrt{2}}{\sigma_\theta}\exp\left(-\frac{\sqrt{2}|\theta-\theta_0|}{\sigma_\theta}\right)P(θ)=σθ2exp(σθ2θθ0)

相干距离:

Dc≈λ2πσθD_c \approx \frac{\lambda}{2\pi\sigma_\theta}Dc2πσθλ

车载环境的特殊挑战

车载环境赋予77GHz雷达信道独特的传播特性。两径模型描述地面反射:

h(t)=α1δ(t−τ1)+α2δ(t−τ2)exp⁡(jϕ)h(t) = \alpha_1\delta(t-\tau_1) + \alpha_2\delta(t-\tau_2)\exp(j\phi)h(t)=α1δ(tτ1)+α2δ(tτ2)exp(jϕ)

其中α1\alpha_1α1为直射径,α2\alpha_2α2为地面反射径。

相互雷达干扰功率:

Pinterference=Pt×Gt×Gr×(λ4πd)2P_{interference} = P_t \times G_t \times G_r \times \left(\frac{\lambda}{4\pi d}\right)^2Pinterference=Pt×Gt×Gr×(4πdλ)2

降雨衰减系数:

αrain=kRα\alpha_{rain} = kR^\alphaαrain=kRα

其中RRR为降雨率(mm/h),kkkα\alphaα为频率相关系数。

时变信道的高级建模方法

几何随机信道模型(GBSM)的信道冲击响应:

h(t,τ)=KK+1×δ(τ)+1K+1×∑n=1N1N×exp⁡(j(2πfd,nt+ϕn))×δ(τ−τn)h(t,\tau) = \sqrt{\frac{K}{K+1}} \times \delta(\tau) + \sqrt{\frac{1}{K+1}} \times \sum_{n=1}^{N} \frac{1}{\sqrt{N}} \times \exp(j(2\pi f_{d,n} t + \phi_n)) \times \delta(\tau - \tau_n)h(t,τ)=K+1K×δ(τ)+K+11×n=1NN1×exp(j(2πfd,nt+ϕn))×δ(ττn)

修正的多普勒功率谱:

S(f)=11−(ffmax)2×P(arccos⁡(ffmax))S(f) = \frac{1}{\sqrt{1-\left(\frac{f}{f_{max}}\right)^2}} \times P\left(\arccos\left(\frac{f}{f_{max}}\right)\right)S(f)=1(fmaxf)21×P(arccos(fmaxf))

局部散射函数(LSF):

LSF(t,τ,f)=E[∣H(t,f)∣2]LSF(t,\tau,f) = E[|H(t,f)|^2]LSF(t,τ,f)=E[H(t,f)2]

非平稳度的演化距离:

D(t1,t2)=∫∫∣LSF(t1,τ,f)−LSF(t2,τ,f)∣dτdfD(t_1,t_2) = \int\int|LSF(t_1,\tau,f) - LSF(t_2,\tau,f)|d\tau dfD(t1,t2)=∫∫LSF(t1,τ,f)LSF(t2,τ,f)dτdf

统计特性分析与性能评估

电平通过率(LCR):

LCR=∫0∞ρ˙fp(ρ,ρ˙)dρ˙LCR = \int_0^\infty \dot{\rho}f_p(\rho,\dot{\rho})d\dot{\rho}LCR=0ρ˙fp(ρ,ρ˙)dρ˙

对于瑞利衰落信道,归一化LCR为:

NR=2πfd,max×ρ×exp⁡(−ρ2)N_R = \sqrt{2\pi}f_{d,max} \times \rho \times \exp(-\rho^2)NR=2πfd,max×ρ×exp(ρ2)

平均衰落持续时间(AFD):

AFD=P(R<R0)LCR=1−exp⁡(−ρ2)2πfd,max×ρ×exp⁡(−ρ2)AFD = \frac{P(R < R_0)}{LCR} = \frac{1-\exp(-\rho^2)}{\sqrt{2\pi}f_{d,max} \times \rho \times \exp(-\rho^2)}AFD=LCRP(R<R0)=2πfd,max×ρ×exp(ρ2)1exp(ρ2)

MIMO雷达的信道容量:

C=log⁡2det⁡(I+ρMHHH)C = \log_2\det\left(I + \frac{\rho}{M}HH^H\right)C=log2det(I+MρHHH)

衰落缓解技术的原理与实现

注水算法的功率分配:

Pi=(μ−N0∣Hi∣2)+P_i = \left(\mu - \frac{N_0}{|H_i|^2}\right)^+Pi=(μHi2N0)+

其中μ\muμ由总功率约束决定。

认知雷达的波形优化:

Wopt=arg⁡max⁡I(Y;X∣W)W_{opt} = \arg\max I(Y;X|W)Wopt=argmaxI(Y;XW)

其中III为互信息,YYY为接收信号,XXX为目标状态,WWW为波形参数。


附录:数学推导

A. 瑞利分布

考虑NNN个独立同分布的复高斯随机变量叠加:

r(t)=∑i=1Naiexp⁡(jϕi)=∑i=1N(xi+jyi)r(t) = \sum_{i=1}^{N} a_i\exp(j\phi_i) = \sum_{i=1}^{N} (x_i + jy_i)r(t)=i=1Naiexp(jϕi)=i=1N(xi+jyi)

其中aia_iaiϕi\phi_iϕi分别是第iii条路径的幅度和相位。根据中心极限定理,当N→∞N \to \inftyN时:

x(t)=∑i=1Nxi∼N(0,σ2)x(t) = \sum_{i=1}^{N} x_i \sim \mathcal{N}(0, \sigma^2)x(t)=i=1NxiN(0,σ2)
y(t)=∑i=1Nyi∼N(0,σ2)y(t) = \sum_{i=1}^{N} y_i \sim \mathcal{N}(0, \sigma^2)y(t)=i=1NyiN(0,σ2)

R=x2+y2R = \sqrt{x^2 + y^2}R=x2+y2Θ=arctan⁡(y/x)\Theta = \arctan(y/x)Θ=arctan(y/x),进行极坐标变换。雅可比行列式为:

J=∣∂x∂r∂x∂θ∂y∂r∂y∂θ∣=∣cos⁡θ−rsin⁡θsin⁡θrcos⁡θ∣=rJ = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = rJ=rxryθxθy=cosθsinθrsinθrcosθ=r

联合概率密度函数:

fR,Θ(r,θ)=fX,Y(rcos⁡θ,rsin⁡θ)∣J∣f_{R,\Theta}(r,\theta) = f_{X,Y}(r\cos\theta, r\sin\theta)|J|fR,Θ(r,θ)=fX,Y(rcosθ,rsinθ)J

=12πσ2exp⁡(−r2cos⁡2θ+r2sin⁡2θ2σ2)⋅r= \frac{1}{2\pi\sigma^2}\exp\left(-\frac{r^2\cos^2\theta + r^2\sin^2\theta}{2\sigma^2}\right) \cdot r=2πσ21exp(2σ2r2cos2θ+r2sin2θ)r

=r2πσ2exp⁡(−r22σ2)= \frac{r}{2\pi\sigma^2}\exp\left(-\frac{r^2}{2\sigma^2}\right)=2πσ2rexp(2σ2r2)

θ\thetaθ积分得到边缘分布:

fR(r)=∫02πr2πσ2exp⁡(−r22σ2)dθ=rσ2exp⁡(−r22σ2)f_R(r) = \int_0^{2\pi} \frac{r}{2\pi\sigma^2}\exp\left(-\frac{r^2}{2\sigma^2}\right)d\theta = \frac{r}{\sigma^2}\exp\left(-\frac{r^2}{2\sigma^2}\right)fR(r)=02π2πσ2rexp(2σ2r2)dθ=σ2rexp(2σ2r2)

B. 莱斯分布的K因子分析

对于存在直射径的情况,接收信号为:

r(t)=Aexp⁡(jθ0)+∑i=1Naiexp⁡(jϕi)r(t) = A\exp(j\theta_0) + \sum_{i=1}^{N} a_i\exp(j\phi_i)r(t)=Aexp(jθ0)+i=1Naiexp(jϕi)

x=Acos⁡θ0+∑i=1Nxix = A\cos\theta_0 + \sum_{i=1}^{N} x_ix=Acosθ0+i=1Nxiy=Asin⁡θ0+∑i=1Nyiy = A\sin\theta_0 + \sum_{i=1}^{N} y_iy=Asinθ0+i=1Nyi

x∼N(Acos⁡θ0,σ2)x \sim \mathcal{N}(A\cos\theta_0, \sigma^2)xN(Acosθ0,σ2)y∼N(Asin⁡θ0,σ2)y \sim \mathcal{N}(A\sin\theta_0, \sigma^2)yN(Asinθ0,σ2)

包络R=x2+y2R = \sqrt{x^2 + y^2}R=x2+y2的概率密度函数通过非中心卡方分布推导:

fR(r)=rσ2exp⁡(−r2+A22σ2)I0(Arσ2)f_R(r) = \frac{r}{\sigma^2}\exp\left(-\frac{r^2+A^2}{2\sigma^2}\right)I_0\left(\frac{Ar}{\sigma^2}\right)fR(r)=σ2rexp(2σ2r2+A2)I0(σ2Ar)

其中修正贝塞尔函数的级数展开:

I0(z)=∑k=0∞1(k!)2(z2)2kI_0(z) = \sum_{k=0}^{\infty} \frac{1}{(k!)^2}\left(\frac{z}{2}\right)^{2k}I0(z)=k=0(k!)21(2z)2k

莱斯因子KKK的定义:

K=直射径功率散射径功率=A22σ2K = \frac{\text{直射径功率}}{\text{散射径功率}} = \frac{A^2}{2\sigma^2}K=散射径功率直射径功率=2σ2A2

K→0K \to 0K0时,分布退化为瑞利分布;当K→∞K \to \inftyK时,趋向于高斯分布。

C. 多普勒频谱

考虑移动接收机在二维各向同性散射环境中,散射体均匀分布在以接收机为中心的圆上。第iii个散射体引起的多普勒频移:

fd,i=vλcos⁡(αi−β)f_{d,i} = \frac{v}{\lambda}\cos(\alpha_i - \beta)fd,i=λvcos(αiβ)

其中vvv是移动速度,αi\alpha_iαi是第iii个散射体的到达角,β\betaβ是移动方向。

对于连续分布的散射体,多普勒功率谱密度为:

S(fd)=P(α)∣dfddα∣S(f_d) = \frac{P(\alpha)}{|\frac{df_d}{d\alpha}|}S(fd)=dαdfdP(α)

其中P(α)P(\alpha)P(α)是到达角的概率密度函数。对于均匀分布P(α)=1/2πP(\alpha) = 1/2\piP(α)=1/2π

dfddα=−vλsin⁡(α−β)\frac{df_d}{d\alpha} = -\frac{v}{\lambda}\sin(\alpha - \beta)dαdfd=λvsin(αβ)

fd=vλcos⁡(α−β)f_d = \frac{v}{\lambda}\cos(\alpha - \beta)fd=λvcos(αβ)得:

α=β±arccos⁡(fdλv)\alpha = \beta \pm \arccos\left(\frac{f_d\lambda}{v}\right)α=β±arccos(vfdλ)

代入得:

S(fd)=12π⋅vλ1−(fdλv)2S(f_d) = \frac{1}{2\pi \cdot \frac{v}{\lambda}\sqrt{1-\left(\frac{f_d\lambda}{v}\right)^2}}S(fd)=2πλv1(vfdλ)21

归一化后得到经典的Jakes谱:

S(f)=1πfd,max1−(ffd,max)2,∣f∣≤fd,maxS(f) = \frac{1}{\pi f_{d,max}\sqrt{1-\left(\frac{f}{f_{d,max}}\right)^2}}, \quad |f| \leq f_{d,max}S(f)=πfd,max1(fd,maxf)21,ffd,max

D. 相干带宽与相干时间的关系推导

信道的时频二元性通过傅里叶变换对建立。频域相关函数与功率时延谱的关系:

RH(Δf)=F{P(τ)}=∫−∞∞P(τ)e−j2πΔfτdτR_H(\Delta f) = \mathcal{F}\{P(\tau)\} = \int_{-\infty}^{\infty} P(\tau)e^{-j2\pi\Delta f\tau}d\tauRH(Δf)=F{P(τ)}=P(τ)ej2πΔfτdτ

对于指数功率时延谱P(τ)=1τrmse−τ/τrmsu(τ)P(\tau) = \frac{1}{\tau_{rms}}e^{-\tau/\tau_{rms}}u(\tau)P(τ)=τrms1eτ/τrmsu(τ)

RH(Δf)=∫0∞1τrmse−τ/τrmse−j2πΔfτdτR_H(\Delta f) = \int_0^{\infty} \frac{1}{\tau_{rms}}e^{-\tau/\tau_{rms}}e^{-j2\pi\Delta f\tau}d\tauRH(Δf)=0τrms1eτ/τrmsej2πΔfτdτ

=1τrms⋅11τrms+j2πΔf=11+j2πΔfτrms= \frac{1}{\tau_{rms}} \cdot \frac{1}{\frac{1}{\tau_{rms}} + j2\pi\Delta f} = \frac{1}{1 + j2\pi\Delta f\tau_{rms}}=τrms1τrms1+j2πΔf1=1+j2πΔfτrms1

归一化相关函数:

ρH(Δf)=RH(Δf)RH(0)=11+j2πΔfτrms\rho_H(\Delta f) = \frac{R_H(\Delta f)}{R_H(0)} = \frac{1}{1 + j2\pi\Delta f\tau_{rms}}ρH(Δf)=RH(0)RH(Δf)=1+j2πΔfτrms1

幅度:

∣ρH(Δf)∣=11+(2πΔfτrms)2|\rho_H(\Delta f)| = \frac{1}{\sqrt{1 + (2\pi\Delta f\tau_{rms})^2}}ρH(Δf)=1+(2πΔfτrms)21

定义相干带宽为∣ρH(Bc)∣=0.5|\rho_H(B_c)| = 0.5ρH(Bc)=0.5

11+(2πBcτrms)2=0.5\frac{1}{\sqrt{1 + (2\pi B_c\tau_{rms})^2}} = 0.51+(2πBcτrms)21=0.5

解得:

Bc=32πτrms≈0.276τrmsB_c = \frac{\sqrt{3}}{2\pi\tau_{rms}} \approx \frac{0.276}{\tau_{rms}}Bc=2πτrms3τrms0.276

工程上常用的近似:Bc≈15τrmsB_c \approx \frac{1}{5\tau_{rms}}Bc5τrms1(对应90%相关性)

E. MIMO信道容量的渐近分析

考虑M×NM \times NM×N MIMO系统,信道矩阵H∈CN×MH \in \mathbb{C}^{N \times M}HCN×M,其元素为独立同分布的复高斯随机变量。

信道容量:

C=log⁡2det⁡(IN+ρMHHH)C = \log_2\det\left(I_N + \frac{\rho}{M}HH^H\right)C=log2det(IN+MρHHH)

利用矩阵行列式的性质:

det⁡(IN+AB)=det⁡(IM+BA)\det(I_N + AB) = \det(I_M + BA)det(IN+AB)=det(IM+BA)

M≤NM \leq NMN时:

C=log⁡2det⁡(IM+ρMHHH)C = \log_2\det\left(I_M + \frac{\rho}{M}H^HH\right)C=log2det(IM+MρHHH)

W=HHHW = H^HHW=HHH的特征值为{λ1,λ2,...,λM}\{\lambda_1, \lambda_2, ..., \lambda_M\}{λ1,λ2,...,λM},则:

C=∑i=1Mlog⁡2(1+ρλiM)C = \sum_{i=1}^{M} \log_2\left(1 + \frac{\rho\lambda_i}{M}\right)C=i=1Mlog2(1+Mρλi)

在高信噪比条件下(ρ→∞\rho \to \inftyρ):

C≈∑i=1Mlog⁡2(ρλiM)=Mlog⁡2(ρM)+∑i=1Mlog⁡2λiC \approx \sum_{i=1}^{M} \log_2\left(\frac{\rho\lambda_i}{M}\right) = M\log_2\left(\frac{\rho}{M}\right) + \sum_{i=1}^{M}\log_2\lambda_iCi=1Mlog2(Mρλi)=Mlog2(Mρ)+i=1Mlog2λi

利用Wishart矩阵的渐近特性,当M,N→∞M, N \to \inftyM,NM/N=β≤1M/N = \beta \leq 1M/N=β1时:

1MC→∫λminλmaxlog⁡2(1+ρλ)fMP(λ)dλ\frac{1}{M}C \to \int_{\lambda_{min}}^{\lambda_{max}} \log_2(1 + \rho\lambda)f_{MP}(\lambda)d\lambdaM1Cλminλmaxlog2(1+ρλ)fMP(λ)dλ

其中fMP(λ)f_{MP}(\lambda)fMP(λ)是Marchenko-Pastur分布:

fMP(λ)=12πβλ(λmax−λ)(λ−λmin)f_{MP}(\lambda) = \frac{1}{2\pi\beta\lambda}\sqrt{(\lambda_{max} - \lambda)(\lambda - \lambda_{min})}fMP(λ)=2πβλ1(λmaxλ)(λλmin)

λmax/min=(1±β)2\lambda_{max/min} = (1 \pm \sqrt{\beta})^2λmax/min=(1±β)2

F. 时变信道的Bello函数系统

时变信道的完整表征需要四个系统函数,它们通过傅里叶变换对相互关联:

  1. 时变冲激响应:h(t,τ)h(t, \tau)h(t,τ)
  2. 时变传递函数:H(t,f)=Fτ{h(t,τ)}H(t, f) = \mathcal{F}_\tau\{h(t, \tau)\}H(t,f)=Fτ{h(t,τ)}
  3. 多普勒扩展函数:S(ν,τ)=Ft{h(t,τ)}S(\nu, \tau) = \mathcal{F}_t\{h(t, \tau)\}S(ν,τ)=Ft{h(t,τ)}
  4. 输出多普勒扩展函数:T(ν,f)=Ft{H(t,f)}=Fτ{S(ν,τ)}T(\nu, f) = \mathcal{F}_t\{H(t, f)\} = \mathcal{F}_\tau\{S(\nu, \tau)\}T(ν,f)=Ft{H(t,f)}=Fτ{S(ν,τ)}

WSSUS(广义平稳非相关散射)假设下的相关函数:

Rh(t,s;τ,σ)=E[h(t,τ)h∗(s,σ)]=Rh(t−s;τ)δ(τ−σ)R_h(t, s; \tau, \sigma) = E[h(t, \tau)h^*(s, \sigma)] = R_h(t-s; \tau)\delta(\tau - \sigma)Rh(t,s;τ,σ)=E[h(t,τ)h(s,σ)]=Rh(ts;τ)δ(τσ)

散射函数定义为:

Ph(ν,τ)=Ft−s{Rh(t−s;τ)}P_h(\nu, \tau) = \mathcal{F}_{t-s}\{R_h(t-s; \tau)\}Ph(ν,τ)=Fts{Rh(ts;τ)}

多普勒功率谱:

PH(ν)=∫Ph(ν,τ)dτP_H(\nu) = \int P_h(\nu, \tau)d\tauPH(ν)=Ph(ν,τ)dτ

功率时延谱:

P(τ)=∫Ph(ν,τ)dνP(\tau) = \int P_h(\nu, \tau)d\nuP(τ)=Ph(ν,τ)dν

G. 深度衰落概率

对于瑞利衰落,深度衰落概率定义为信号电平低于门限γ\gammaγ的概率:

Pfade=P(R<γ)=∫0γfR(r)dr=∫0γrσ2e−r2/2σ2drP_{fade} = P(R < \gamma) = \int_0^\gamma f_R(r)dr = \int_0^\gamma \frac{r}{\sigma^2}e^{-r^2/2\sigma^2}drPfade=P(R<γ)=0γfR(r)dr=0γσ2rer2/2σ2dr

u=r2/2σ2u = r^2/2\sigma^2u=r2/2σ2,则du=r/σ2drdu = r/\sigma^2 drdu=r/σ2dr

Pfade=∫0γ2/2σ2e−udu=1−e−γ2/2σ2P_{fade} = \int_0^{\gamma^2/2\sigma^2} e^{-u}du = 1 - e^{-\gamma^2/2\sigma^2}Pfade=0γ2/2σ2eudu=1eγ2/2σ2

对于归一化门限ρ=γ/σ2\rho = \gamma/\sigma\sqrt{2}ρ=γ/σ2

Pfade=1−e−ρ2P_{fade} = 1 - e^{-\rho^2}Pfade=1eρ2

对于莱斯衰落,使用Marcum Q函数:

Pfade=1−Q(2K,2(K+1)ρ)P_{fade} = 1 - Q\left(\sqrt{2K}, \sqrt{2(K+1)}\rho\right)Pfade=1Q(2K,2(K+1)ρ)

其中Marcum Q函数定义为:

Q(a,b)=∫b∞xexp⁡(−x2+a22)I0(ax)dxQ(a, b) = \int_b^\infty x\exp\left(-\frac{x^2+a^2}{2}\right)I_0(ax)dxQ(a,b)=bxexp(2x2+a2)I0(ax)dx

H. 角度功率谱与空间相关性

Von Mises分布描述角度功率谱:

P(θ)=12πI0(κ)exp⁡(κcos⁡(θ−μ))P(\theta) = \frac{1}{2\pi I_0(\kappa)}\exp(\kappa\cos(\theta - \mu))P(θ)=2πI0(κ)1exp(κcos(θμ))

其中κ\kappaκ是集中参数,μ\muμ是平均到达角。

空间相关函数对于均匀线阵(ULA):

ρspatial(d)=E[h(r1)h∗(r2)]=∫−ππP(θ)ejkdsin⁡θdθ\rho_{spatial}(d) = E[h(r_1)h^*(r_2)] = \int_{-\pi}^{\pi} P(\theta)e^{jkd\sin\theta}d\thetaρspatial(d)=E[h(r1)h(r2)]=ππP(θ)ejkdsinθdθ

对于各向同性散射(P(θ)=1/2πP(\theta) = 1/2\piP(θ)=1/2π):

ρspatial(d)=J0(kd)=J0(2πdλ)\rho_{spatial}(d) = J_0(kd) = J_0\left(\frac{2\pi d}{\lambda}\right)ρspatial(d)=J0(kd)=J0(λ2πd)

其中J0J_0J0是零阶贝塞尔函数。

第一个零点出现在kd=2.4048kd = 2.4048kd=2.4048,即d≈0.38λd \approx 0.38\lambdad0.38λ。这决定了MIMO天线的最小间距要求。

I. 非平稳信道的演化谱理论

非平稳信道的Wigner-Ville分布:

W(t,f)=∫−∞∞Rh(t+τ2,t−τ2)e−j2πfτdτW(t, f) = \int_{-\infty}^{\infty} R_h\left(t + \frac{\tau}{2}, t - \frac{\tau}{2}\right)e^{-j2\pi f\tau}d\tauW(t,f)=Rh(t+2τ,t2τ)ej2πfτdτ

局部散射函数(LSF)通过平滑Wigner-Ville分布获得:

LSF(t,ν,τ)=∫∫W(t′,f′)g(t−t′,ν−f′,τ)dt′df′LSF(t, \nu, \tau) = \int\int W(t', f')g(t-t', \nu-f', \tau)dt'df'LSF(t,ν,τ)=∫∫W(t,f)g(tt,νf,τ)dtdf

其中ggg是平滑核函数。

信道的非平稳度指标:

η(t)=∫∫∣∂LSF(t,ν,τ)∂t∣2dνdτ∫∫∣LSF(t,ν,τ)∣2dνdτ\eta(t) = \frac{\int\int \left|\frac{\partial LSF(t, \nu, \tau)}{\partial t}\right|^2 d\nu d\tau}{\int\int |LSF(t, \nu, \tau)|^2 d\nu d\tau}η(t)=∫∫LSF(t,ν,τ)2dνdτ∫∫tLSF(t,ν,τ)2dνdτ

该指标量化了信道统计特性的时变速率,指导自适应算法的更新频率设计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值