基于子脉冲的FMCW双功能雷达通信系统中雷达性能劣化消除方法
R. Xu, R. Wen, G. Cui and G. Wen, “Radar Performance Degradation Elimination for Sub-Pulse-Based FMCW in DFRC,” in IEEE Signal Processing Letters, vol. 30, pp. 1582-1586, 2023, doi: 10.1109/LSP.2023.3327539.
摘要
现有关于基于子脉冲的频率调制连续波(FMCW)双功能雷达通信(DFRC)的研究缺乏对雷达处理链路的完整分析,以及对雷达性能劣化问题的有效解决方案。本文对FMCW-DFRC信号处理进行了完整的信号建模。通过补偿数据调制产生的变化,提出了一种基于双路径补偿和拼接(DPCS)的雷达处理方案,实现了与未调制FMCW相同的雷达性能。数值结果表明,与现有的FMCW-DFRC工作相比,DPCS实现了约27 dB的旁瓣抑制增强。
1. 引言
由于对无处不在的无线接入和多媒体服务的需求不断增长,雷达应用面临着与无线通信系统共享射频频段的巨大压力。双功能雷达通信(DFRC)旨在利用相同的波形实现雷达探测和通信能力。频率调制连续波(FMCW)雷达系统中应用的线性调频波形已成为DFRC的主要研究方向之一。
现有的FMCW-DFRC包括相移键控(PSK)、正交幅度调制(QAM)、跳频(FH)、最小频移键控(MSK)、频率调制和初始频率调制等。我们将几种调制方案归类为基于子脉冲的多重调制(SBMM),这意味着线性调频周期在时域上被划分为子脉冲,同时在每个子脉冲上采用幅移键控(ASK)、PSK和频移键控(FSK)的多重调制。
特别是,MSK、QAM或FH等调制方案可以被视为在某些规则下上述调制方案的特定组合。由于FMCW雷达采用相干处理,参数变化主要来自子脉冲间点之后的区域,导致能量积累不完整和区域失真。然而,现有工作缺乏对变化区域的完整清晰分析。一些工作试图通过限制通信的调制权重或优化来(在一定程度上)抑制雷达性能的劣化。前者的主要思想是降低参数变化的强度,而后者从可用波形集合中选择最优波形。这些工作未能从根本上消除劣化,但提供了一个新的视角,即对通信数据调制引起的参数变化进行相应补偿应该能够使性能更接近未调制FMCW的性能。
2. SBMM-FMCW雷达建模
设T和B分别为具有K个子脉冲的线性调频的持续时间和带宽,Tc=T/KT_c = T/KTc=T/K和Bc=B/KB_c = B/KBc=B/K分别为子脉冲的持续时间和带宽。第k个子脉冲的波形可写为:
s^(k,t)=a[k]ejπ(2(f0+fc[k])t+μt2)+jθ[k]\hat{s}(k, t) = a[k]e^{j\pi(2(f_0+f_c[k])t+\mu t^2)+j\theta[k]}s^(k,t)=a[k]ejπ(2(f0+fc[k])t+μt2)+jθ[k]
其中μ=B/T\mu = B/Tμ=B/T是频率调制斜率,f0f_0f0是工作频段的起始频率。对于第k个子脉冲,a[k]∈{A1,A2,⋯ ,AN}a[k] \in \{A_1, A_2, \cdots, A_N\}a[k]∈{A1,A2,⋯,AN}是归一化ASK项(其中Ap≤1,p∈{1,...,N}A_p \leq 1, p \in \{1,...,N\}Ap≤1,p∈{1,...,N}),θ[k]∈{0,2π/M,⋯ ,2π(M−1)/M}\theta[k] \in \{0, 2\pi/M, \cdots, 2\pi(M-1)/M\}θ[k]∈{0,2π/M,⋯,2π(M−1)/M}是PSK项,fc[k]∈{0,Bc,2Bc,⋯ ,(J−1)Bc}f_c[k] \in \{0, B_c, 2B_c, \cdots, (J-1)B_c\}fc[k]∈{0,Bc,2Bc,⋯,(J−1)Bc}是FSK项。本文中FSK在可用频率值上遍历,即J=KJ = KJ=K且线性调频周期内fc[k]f_c[k]fc[k]互不相等。具有K个子脉冲的SBMM-FMCW为:
stx(t)=∑k=0K−1u(t/Tc−k)s^(k,t−kTc)s_{tx}(t) = \sum_{k=0}^{K-1} u(t/T_c - k)\hat{s}(k, t - kT_c)stx(t)=k=0∑K−1u(t/Tc−k)s^(k,t−kTc)
其中u(x)=1,0≤x≤1u(x) = 1, 0 \leq x \leq 1u(x)=1,0≤x≤1是矩形窗函数。
根据雷达原理,单天线从Q个目标反射的接收信号为:
srx(z,t)=∑q=1Qε[q]stx(z,t−τq)ejϕ[q]+j2πψ[q]zT+ξ(t)s_{rx}(z, t) = \sum_{q=1}^{Q} \varepsilon[q]s_{tx}(z, t - \tau_q)e^{j\phi[q]+j2\pi\psi[q]zT} + \xi(t)srx(z,t)=q=1∑Qε[q]stx(z,t−τq)ejϕ[q]+j2πψ[q]zT+ξ(t)
其中z是帧内的线性调频编号,ξ(t)\xi(t)ξ(t)是加性高斯噪声,ϕ[q]\phi[q]ϕ[q]和ε[q]\varepsilon[q]ε[q]分别是第q个目标产生的相位偏移和衰减系数,ψ[q]=2ν[q]f0/c\psi[q] = 2\nu[q]f_0/cψ[q]=2ν[q]f0/c是由相对速度ν[q]\nu[q]ν[q]引起的目标多普勒频移,τ[q]=2H[q]/c\tau[q] = 2H[q]/cτ[q]=2H[q]/c是第q个目标距离H[q]H[q]H[q]的往返延迟(其中c是光速)。
通过忽略噪声项并将接收信号与发送信号混频,得到输出中频(IF)信号并进一步分解为:
r(z,t)=srx(z,t)stx∗(z,t)=∑q=1QP[z,q]C[q](x(z,q,t)+y(z,q,t))r(z, t) = s_{rx}(z, t)s_{tx}^*(z, t) = \sum_{q=1}^{Q} P[z, q]C[q](x(z, q, t) + y(z, q, t))r(z,t)=srx(z,t)stx∗(z,t)=q=1∑QP[z,q]C[q](x(z,q,t)+y(z,q,t))
其中x(z,q,t)x(z, q, t)x(z,q,t)表示整个时域和第k个子脉冲的保留区域(RA),包含了受ASK项影响的ARC[k]=a2[k]A_{RC}[k] = a^2[k]ARC[k]=a2[k]、受FSK项影响的相移Ω[k,q]=e−j2πτ[q]fc[k]\Omega[k,q] = e^{-j2\pi\tau[q]f_c[k]}Ω[k,q]=e−j2πτ[q]fc[k],以及由目标延迟τ[q]\tau[q]τ[q]影响的频率偏差项Λ(q,t−kTc)=e−j2πτ[q]μ(t−kTc)\Lambda(q,t-kT_c) = e^{-j2\pi\tau[q]\mu(t-kT_c)}Λ(q,t−kTc)=e−j2πτ[q]μ(t−kTc)。
而y(z,q,t)y(z, q, t)y(z,q,t)表示整个时域和第k个子脉冲的交叉相干区域(CCA),包含了受ASK项影响的ACCA[k]=a[k+1]a[k]A_{CCA}[k] = a[k+1]a[k]ACCA[k]=a[k+1]a[k]、受FSK项影响的频移F(k,q,t)=ej2π(fc[k]−fc[k+1])(t−kTc)F(k,q,t) = e^{j2\pi(f_c[k]-f_c[k+1])(t-kT_c)}F(k,q,t)=ej2π(fc[k]−fc[k+1])(t−kTc),以及受PSK项影响的相移Θ[k]=ejθ[k]−jθ[k+1]\Theta[k] = e^{j\theta[k]-j\theta[k+1]}Θ[k]=ejθ[k]−jθ[k+1]。
常数项C[q]=ε[q]ejϕ[q]e−jπτ[q](2f0−μτ[q])C[q] = \varepsilon[q]e^{j\phi[q]}e^{-j\pi\tau[q](2f_0-\mu\tau[q])}C[q]=ε[q]ejϕ[q]e−jπτ[q](2f0−μτ[q])仅受目标参数影响,而P[z,q]=ej2πψ[q]zTP[z,q] = e^{j2\pi\psi[q]zT}P[z,q]=ej2πψ[q]zT是与ψ[q]\psi[q]ψ[q]和z耦合的频率偏差项。
图1:SBMM-FMCW信号在雷达处理链路中的时频特性
图1展示了采用DPCS方案的SBMM-FMCW雷达处理链路的时频特性图。该图详细说明了信号在不同处理阶段的频率和时间域变化。图中从上到下依次显示了发射信号stxs_{tx}stx、接收信号srxs_{rx}srx、交叉相干区域y(CCA)、保留区域x(RA)以及最终补偿后的信号x’的时频演变。图中清晰地标注了不同频率编号(0到3)对应的子脉冲,以及延迟τ[1]\tau[1]τ[1]和扩展区域的位置。特别值得注意的是,CCA区域(用斜线阴影表示)将被低通滤波器滤除,而RA区域的周期性缺失和相位偏移是导致雷达性能劣化的主要原因。通过DPCS处理后,这些缺失和偏移得到了有效补偿,恢复了信号的连续性。通过比较上述表达式与未调制FMCW的相干处理输出,可以分析数据调制引起的变化。特别是,ASK在RA和CCA中产生幅度变化;PSK在RA和CCA之间引起相位偏差;FSK在RA之间产生相位偏差,并为CCA引起频率偏差。在传统FMCW的处理链路中,具有频率偏差的CCA将被低通滤波器(LPF)滤除,因此这种偏差也可以被视为幅度变化。下变频后,未调制的r0r_0r0是具有长周期T的单频载波方波。然而,SBMM的r产生周期性缺失和参数变化区域,成为由交替的短周期方波(周期为Tc−τ[q]T_c - \tau[q]Tc−τ[q]和τ[q]\tau[q]τ[q])组成的信号,具有相对幅度和相位偏差。方波周期越短,其频谱中对应sinc函数的旁瓣越高。因此,很明显SBMM将使距离域剖面的主瓣展宽和旁瓣抬升,大大恶化雷达性能。
3. 基于DPCS的劣化消除方案
图2:采用DPCS的雷达信号处理链路
图2展示了所提出的DPCS雷达信号处理链路的详细框图。该图清晰地说明了双路径处理架构:上路径(Y’)处理CCA信号,包含TC(时序校正)、AC(幅度补偿)、ADC(模数转换)和FPC(频率相位补偿)模块;下路径(X’)处理RA信号,包含TC、AC和ADC模块。两路信号在TS(时序拼接)模块汇合,然后经过窗函数处理、2D-FFT变换,最终进行CFAR检测。图中还显示了各种补偿参数:Δt\Delta tΔt用于时序校正,ACCA′A_{CCA}'ACCA′和ARA′A_{RA}'ARA′用于幅度补偿,F′F'F′用于频率补偿。这种双路径架构是DPCS方案的核心创新,能够分别处理和补偿RA和CCA的不同特性。
首先,接收的射频信号与发送信号混频。其次,信号被分成两路,相应的CCA路径通过频率和相位补偿(FPC)进行处理。第三,分别对两条路径进行LPF、采样、幅度补偿(AC)和时序校正(TC)。最后,两路信号通过时序拼接(TS)进行处理,后续信号处理与原始FMCW一致。
在第二路径中,设置ARA′[k]=1/ARA[k]A'_{RA}[k] = 1/A_{RA}[k]ARA′[k]=1/ARA[k]作为AC项。然后,设置Δt[k]=(fc[k]/Bc−k)Tc\Delta t[k] = (f_c[k]/B_c - k)T_cΔt[k]=(fc[k]/Bc−k)Tc作为TC项来补偿Ω[k,q]\Omega[k,q]Ω[k,q]。Δt[k]\Delta t[k]Δt[k]是TcT_cTc的整数倍,TC处理是将第k个子脉冲的RA移动到第fc[k]/Bcf_c[k]/B_cfc[k]/Bc个子脉冲的位置。AC和TC处理后:
X′[z,i]=∑q=1QP[z,q]C[q]∑k=0K−1URA[fc[k]/Bc,q,iTs]Λ(q,iTs)X'[z,i] = \sum_{q=1}^{Q} P[z,q]C[q]\sum_{k=0}^{K-1} U_{RA}[f_c[k]/B_c, q, iT_s]\Lambda(q, iT_s)X′[z,i]=q=1∑QP[z,q]C[q]k=0∑K−1URA[fc[k]/Bc,q,iTs]Λ(q,iTs)
在第一路径中,设置F′[k,q]=F∗[k,q]Θ∗[k]F'[k,q] = F^*[k,q]\Theta^*[k]F′[k,q]=F∗[k,q]Θ∗[k]作为对应于F[k,q]F[k,q]F[k,q]、Θ[k]\Theta[k]Θ[k]的FPC项,并将其与信号r(z,t)r(z,t)r(z,t)混频。之后,进行LPF和ADC采样,提取FPC后的低频CCA采样信号。设置ACCA′[k]=1/ACCA[k]A'_{CCA}[k] = 1/A_{CCA}[k]ACCA′[k]=1/ACCA[k]作为AC项,并采用前述一致的Δt[k]\Delta t[k]Δt[k]作为TC项。CCA信号经AC和TC后:
Y′[z,i]=∑q=1QP[z,q]C[q]∑k=0K−1UCAA[fc[k]/Bc,q,iTs]Λ(q,iTs)Y'[z,i] = \sum_{q=1}^{Q} P[z,q]C[q]\sum_{k=0}^{K-1} U_{CAA}[f_c[k]/B_c, q, iT_s]\Lambda(q, iT_s)Y′[z,i]=q=1∑QP[z,q]C[q]k=0∑K−1UCAA[fc[k]/Bc,q,iTs]Λ(q,iTs)
两式的包络互补且相位连续。我们处理TS得到:
R′[z,i]=X′[z,i]+Y′[z,i]=∑q=1QP[z,q]C[q]Λ(q,iTs)R'[z,i] = X'[z,i] + Y'[z,i] = \sum_{q=1}^{Q} P[z,q]C[q]\Lambda(q, iT_s)R′[z,i]=X′[z,i]+Y′[z,i]=q=1∑QP[z,q]C[q]Λ(q,iTs)
经DPCS处理后的输出信号与未调制FMCW一致(如果忽略LPF引起的失真并假设两路径的信号处理完全同步)。对应于目标速度的多普勒项P[z,q]P[z,q]P[z,q]也保持完整。随后,信号可以通过传统的2D-FFT成像和恒虚警率(CFAR)检测进行处理,以实现雷达检测和成像功能。
4. 性能评估
本节通过MATLAB验证基于SBMM-FMCW的DPCS方案的雷达性能。我们假设雷达反射场景服从Swerling-I模型。仿真中采用的参数与文献[12]一致。此外,LPF的阻带衰减设置为-60 dB。
图3:未调制FMCW、SBMM-FMCW(随机数据)和SBMM-FMCW-DPCS的距离剖面
图3展示了三种不同场景下的雷达距离剖面比较。图3(a)显示了单目标无窗情况下的归一化幅度对比,可以看到FMCW(蓝线)具有最低的旁瓣,SBMM-UP(红线)的旁瓣显著抬升至约-20 dB,而SBMM-DPCS(绿线)的性能介于两者之间,实现了约6 dB的改善。图3(b)展示了单目标汉宁窗情况,DPCS方案实现了显著的37 dB旁瓣抑制增强,其性能几乎与未调制FMCW相当,在-60 dB以上的区域完全重合。图3©呈现了三目标场景(70m、100m、130m),其中130m处的弱目标(幅度为0.01)在SBMM-UP中被100m处强目标的旁瓣完全淹没,而DPCS方案成功检测出全部三个目标,证明了其优越的多目标分辨能力。
图4:DPCS与其他现有FMCW-DFRC工作的比较
图4提供了DPCS方案与现有方法的全面性能比较。图4(a)展示了五种不同方案的距离剖面对比,包括FMCW(理想参考)、QAM-FH[12]、MPSK[9]、PSK[8]、FM[16]和本文提出的DPCS方案。可以明显看出,DPCS方案实现了最低的旁瓣水平(约-80 dB),比次优的QAM-FH方案低约27 dB。图4(b)显示了检测概率PdP_dPd与信噪比SNR的关系曲线(虚警率Pfa=10−5P_{fa}=10^{-5}Pfa=10−5),DPCS在Pd=0.8P_d=0.8Pd=0.8时需要的SNR约为10 dB,虽然比理想FMCW高约1 dB(由于AC处理放大了噪声),但比PSK[8]方案低约6 dB,展现了良好的检测性能与通信自由度的平衡。
最后,我们将DPCS方案的雷达性能与其他基于SBMM-FMCW波形的现有方案进行比较。DPCS方案的旁瓣降低了约27 dB。此外,进行了100000次迭代的蒙特卡罗仿真,通过应用单元平均CFAR来验证各种方案的目标检测概率PdP_dPd。我们设置虚警率Pfa=10−5P_{fa} = 10^{-5}Pfa=10−5,并提供了PdP_dPd随信噪比(SNR)的曲线。由于AC处理放大了噪声,DPCS在Pd=0.2P_d = 0.2Pd=0.2时的SNR比FMCW大约1 dB,比文献[12]和[8]中的方案低约6 dB。可以看出,DPCS与现有工作相比实现了更好的雷达性能,同时保持了同时数据通信的高自由度。
5. 结论
本文解决了SBMM-FMCW DFRC系统中雷达性能劣化的问题。我们首先推导了完整的雷达信号处理模型并分析了雷达性能劣化的原理。之后,根据每个区域的参数变化,我们提出了DPCS方案来补偿相应的参数,实现了与未调制FMCW相同的雷达性能。仿真结果验证了DPCS方案的性能。本文对SBMM-FMCW系统的理论研究和仿真结果将为各种DFRC应用场景提供重要进展。通过补偿数据调制引起的变化,DPCS方案成功地恢复了FMCW的特性,这与第二节和第三节的描述一致。这是该领域首次在不损失任何时间或频率资源的情况下,实现与未调制FMCW相同的雷达性能。DPCS方案的主要贡献在于通过双路径处理分别补偿RA和CCA的参数变化,并通过时序拼接重建连续的雷达信号,从根本上消除了SBMM调制对雷达性能的负面影响。
附录:推导
A. 中频信号分解
当接收信号与发送信号混频后,我们得到中频信号:
r(z,t)=srx(z,t)⋅stx∗(z,t)r(z,t) = s_{rx}(z,t) \cdot s_{tx}^*(z,t)r(z,t)=srx(z,t)⋅stx∗(z,t)
将srxs_{rx}srx和stxs_{tx}stx的表达式代入,并考虑第k个子脉冲的贡献:
r(z,t)=∑q=1Qε[q]∑k=0K−1u(t/Tc−k)u((t−τ[q])/Tc−k)⋅a2[k]⋅ejϕ[q]+j2πψ[q]zT⋅e−j2πτ[q]fc[k]⋅e−j2πτ[q]μ(t−kTc)⋅e−jπτ[q](2f0−μτ[q])r(z,t) = \sum_{q=1}^{Q} \varepsilon[q] \sum_{k=0}^{K-1} u(t/T_c - k)u((t-\tau[q])/T_c - k) \cdot a^2[k] \cdot e^{j\phi[q]+j2\pi\psi[q]zT} \cdot e^{-j2\pi\tau[q]f_c[k]} \cdot e^{-j2\pi\tau[q]\mu(t-kT_c)} \cdot e^{-j\pi\tau[q](2f_0-\mu\tau[q])}r(z,t)=q=1∑Qε[q]k=0∑K−1u(t/Tc−k)u((t−τ[q])/Tc−k)⋅a2[k]⋅ejϕ[q]+j2πψ[q]zT⋅e−j2πτ[q]fc[k]⋅e−j2πτ[q]μ(t−kTc)⋅e−jπτ[q](2f0−μτ[q])
这是保留区域(RA)的贡献。对于交叉相干区域(CCA),需要考虑相邻子脉冲的交叉项:
y(z,q,t)=∑k=0K−1u(t/Tc−k−1)u((t−τ[q])/Tc−k)⋅a[k+1]a[k]⋅ej2π(fc[k]−fc[k+1])(t−kTc)⋅ej(θ[k]−θ[k+1])⋅e−j2πτ[q]μ(t−kTc)y(z,q,t) = \sum_{k=0}^{K-1} u(t/T_c - k - 1)u((t-\tau[q])/T_c - k) \cdot a[k+1]a[k] \cdot e^{j2\pi(f_c[k]-f_c[k+1])(t-kT_c)} \cdot e^{j(\theta[k]-\theta[k+1])} \cdot e^{-j2\pi\tau[q]\mu(t-kT_c)}y(z,q,t)=k=0∑K−1u(t/Tc−k−1)u((t−τ[q])/Tc−k)⋅a[k+1]a[k]⋅ej2π(fc[k]−fc[k+1])(t−kTc)⋅ej(θ[k]−θ[k+1])⋅e−j2πτ[q]μ(t−kTc)
B. 频谱分析与旁瓣机理
对于周期为T的方波信号,其频谱为sinc函数:
S(f)=T⋅sinc(πfT)=T⋅sin(πfT)πfTS(f) = T \cdot \text{sinc}(\pi fT) = T \cdot \frac{\sin(\pi fT)}{\pi fT}S(f)=T⋅sinc(πfT)=T⋅πfTsin(πfT)
第一旁瓣位于f=3/(2T)f = 3/(2T)f=3/(2T)处,其幅度相对于主瓣的比值为:
∣S(3/(2T))S(0)∣=∣sin(3π/2)3π/2∣=23π≈−13.5 dB\left|\frac{S(3/(2T))}{S(0)}\right| = \left|\frac{\sin(3\pi/2)}{3\pi/2}\right| = \frac{2}{3\pi} \approx -13.5 \text{ dB}S(0)S(3/(2T))=3π/2sin(3π/2)=3π2≈−13.5 dB
当SBMM引入周期性缺失后,等效为多个短周期方波的叠加。对于周期为τ[q]\tau[q]τ[q]的短方波,其第一旁瓣位于f=3/(2τ[q])f = 3/(2\tau[q])f=3/(2τ[q]),由于τ[q]≪T\tau[q] \ll Tτ[q]≪T,旁瓣频率大大增加,导致在原始信号的主瓣附近出现强旁瓣。
C. DPCS补偿参数的推导
C.1 幅度补偿
对于RA区域,ASK调制引入的幅度变化为a2[k]a^2[k]a2[k],因此幅度补偿因子为:
ARA′[k]=1a2[k]A'_{RA}[k] = \frac{1}{a^2[k]}ARA′[k]=a2[k]1
对于CCA区域,幅度变化为a[k+1]a[k]a[k+1]a[k]a[k+1]a[k],补偿因子为:
ACCA′[k]=1a[k+1]a[k]A'_{CCA}[k] = \frac{1}{a[k+1]a[k]}ACCA′[k]=a[k+1]a[k]1
C.2 相位补偿
FSK在RA中引入的相位偏移为:
Ω[k,q]=e−j2πτ[q]fc[k]\Omega[k,q] = e^{-j2\pi\tau[q]f_c[k]}Ω[k,q]=e−j2πτ[q]fc[k]
在CCA中,FSK和PSK共同引入的相位/频率偏移为:
F(k,q,t)⋅Θ[k]=ej2π(fc[k]−fc[k+1])(t−kTc)⋅ej(θ[k]−θ[k+1])F(k,q,t) \cdot \Theta[k] = e^{j2\pi(f_c[k]-f_c[k+1])(t-kT_c)} \cdot e^{j(\theta[k]-\theta[k+1])}F(k,q,t)⋅Θ[k]=ej2π(fc[k]−fc[k+1])(t−kTc)⋅ej(θ[k]−θ[k+1])
相应的补偿因子为:
F′[k,q]=e−j2π(fc[k]−fc[k+1])(t−kTc)⋅e−j(θ[k]−θ[k+1])F'[k,q] = e^{-j2\pi(f_c[k]-f_c[k+1])(t-kT_c)} \cdot e^{-j(\theta[k]-\theta[k+1])}F′[k,q]=e−j2π(fc[k]−fc[k+1])(t−kTc)⋅e−j(θ[k]−θ[k+1])
C.3 时序校正
为了对齐不同频率的子脉冲,需要将第k个子脉冲移动到其频率对应的时序位置:
Δt[k]=(fc[k]/Bc−k)Tc\Delta t[k] = (f_c[k]/B_c - k)T_cΔt[k]=(fc[k]/Bc−k)Tc
这确保了所有子脉冲在频率-时间平面上的正确对齐。
D. 窗函数影响分析
汉宁窗函数定义为:
w(n)=0.5−0.5cos(2πnN−1),n=0,1,...,N−1w(n) = 0.5 - 0.5\cos\left(\frac{2\pi n}{N-1}\right), \quad n = 0,1,...,N-1w(n)=0.5−0.5cos(N−12πn),n=0,1,...,N−1
其频域响应的主瓣宽度为4π/N4\pi/N4π/N,第一旁瓣抑制约为-31.5 dB。当存在周期性缺失时,窗函数的连续性被破坏,导致旁瓣抑制能力严重下降。
对于SBMM信号,由于存在K个不连续点,等效的窗函数变为:
weff(n)=w(n)⋅∑k=0K−1u(n−kN/K)w_{eff}(n) = w(n) \cdot \sum_{k=0}^{K-1} u(n - kN/K)weff(n)=w(n)⋅k=0∑K−1u(n−kN/K)
这种分段窗函数的频谱包含大量高频分量,严重恶化了旁瓣抑制性能。
E. 信噪比分析
DPCS处理中的幅度补偿会放大噪声。设原始噪声功率为σ2\sigma^2σ2,经过幅度补偿后,噪声功率变为:
σ′2=σ2⋅⟨1a4[k]⟩\sigma'^2 = \sigma^2 \cdot \left\langle\frac{1}{a^4[k]}\right\rangleσ′2=σ2⋅⟨a4[k]1⟩
其中⟨⋅⟩\langle\cdot\rangle⟨⋅⟩表示统计平均。如果ASK调制的平均功率为aˉ2\bar{a}^2aˉ2,则信噪比损失为:
SNR loss=10log10(1aˉ4) dB\text{SNR loss} = 10\log_{10}\left(\frac{1}{\bar{a}^4}\right) \text{ dB}SNR loss=10log10(aˉ41) dB
这解释了为什么DPCS在低PdP_dPd时需要比理想FMCW高约1 dB的SNR。
F. 多目标场景的分辨率分析
两个目标的距离分辨率由雷达带宽决定:
ΔR=c2B\Delta R = \frac{c}{2B}ΔR=2Bc
在SBMM-UP中,由于旁瓣抬升,弱目标检测的动态范围受限。设强目标幅度为AsA_sAs,弱目标幅度为AwA_wAw,旁瓣水平为SLLSLLSLL,则弱目标可检测的条件为:
20log10(AwAs)>SLL20\log_{10}\left(\frac{A_w}{A_s}\right) > SLL20log10(AsAw)>SLL
对于图3©中的场景,Aw/As=0.01A_w/A_s = 0.01Aw/As=0.01(-40 dB),而SBMM-UP的旁瓣约为-20 dB,因此弱目标被淹没。DPCS将旁瓣降至-80 dB以下,远低于-40 dB的弱目标水平,因此能够成功检测。