FMCW与PMCW汽车雷达相互干扰现象学研究
A. Bourdoux, K. Parashar and M. Bauduin, “Phenomenology of mutual interference of FMCW and PMCW automotive radars,” 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 2017, pp. 1709-1714, doi: 10.1109/RADAR.2017.7944482.
引言
随着高级驾驶辅助系统(ADAS)向自动驾驶的最终目标发展,汽车行业包括整车制造商和一、二级供应商(即雷达模块和雷达芯片供应商)对此表现出极大的兴趣。这种先进功能需要多模态传感器融合来提高感知的准确性、可靠性和鲁棒性。雷达因其长探测距离和对环境条件的鲁棒性等理想特性,成为ADAS的关键传感器模态。雷达还能够以极高的精度和分辨率准实时测量距离、速度和角度(角度分辨率适中)。
汽车雷达是主动传感器,这意味着它们向待扫描的环境辐射感知波形。来自环境的回波由高灵敏度接收机接收并处理,以实现对固定或移动目标的检测,同时估计它们的位置(距离、方位角、仰角)和速度。作为主动传感器既是"祝福"也是"诅咒":"祝福"包括雷达的所有理想特性,其中长探测距离明显与雷达的发射功率相关;“诅咒"来自于发射波形也可能被位于发射雷达波束内的其他雷达接收,产生所谓的"相互干扰”(MI)。
汽车雷达的监管规定对汽车和雷达行业是有益的,因为它协调了可使用的频段。对于长距离雷达(LRR),76至77 GHz频段(简称77GHz频段)已在世界大部分地区分配。对于中短距离雷达(MRR和SRR),77至81 GHz频段(简称79GHz频段)已在世界某些但非所有地区分配。预计这个79GHz频段将来会在全球范围内用于MRR和SRR。新车评估计划(NCAP)将来将强制要求所有新车配备碰撞避免传感器,其中雷达将发挥核心作用。这些频率协调和NCAP规则在MI背景下很重要,因为它们将导致未来大量雷达占用相同频段。
简单的计算很容易表明,MI的水平通常高于待检测目标反射功率的水平。这主要是因为期望回波的功率随距离的四次方衰减,而干扰的功率随距离的平方衰减。因此,到达受害雷达的干扰与期望回波竞争,在某些情况下可能掩盖目标,特别是通常来自脆弱或远距离目标的弱回波。因此,评估这种MI以估计受害雷达性能的降级非常重要,两个主要的降级是灵敏度降低和虚警。然而,这种评估是一项艰巨的任务,因为场景的数量几乎是无限的。实际上,场景可以包括受害者和干扰源的几何形状(即距离、方向、速度)、干扰源的数量、不同的波形可能性、雷达参数(载频、带宽、距离和多普勒参数、波束宽度、相控阵/MIMO模式等)。本研究考虑了FMCW和PMCW两种现代波形,分析它们之间的MI行为:FMCW雷达采用快速调频,这种更现代的变体正变得更加突出,能够实现瞬时多普勒测量,无需慢调频雷达在拥挤场景中所需的困难消歧;PMCW雷达最近被提出用于汽车雷达,得益于超快速模数转换器(ADC)的出现,由于代码设计的灵活性等原因,它们提供了有趣的特性。
雷达系统架构与信号模型
FMCW雷达系统详细描述
图1上部展示了FMCW雷达的完整系统框图。发射链路从压控振荡器(VCO)开始,产生线性调频信号。该信号通过功率放大器(PA)放大后,经由发射天线辐射到空间。接收链路中,回波信号首先与发射信号的一部分进行混频,产生中频(IF)信号。这个过程称为解线调或去斜率处理,是FMCW雷达的核心操作。
FMCW雷达发射的快速锯齿形线性调频信号可以更详细地表示为:
stx(t)=Aexp(jϕ(t))=Aexp(j2π(f0t±B2Tcht2)),t∈[−Tch/2,Tch/2]s_{tx}(t) = A \exp\left(j\phi(t)\right) = A \exp\left(j2\pi\left(f_0t \pm \frac{B}{2T_{ch}}t^2\right)\right), \quad t \in [-T_{ch}/2, T_{ch}/2]stx(t)=Aexp(jϕ(t))=Aexp(j2π(f0t±2TchBt2)),t∈[−Tch/2,Tch/2]
其中AAA是信号幅度,f0f_0f0是载波频率(79GHz),BBB是调频带宽(典型值为1-4GHz),TchT_{ch}Tch是调频持续时间(典型值为10-100μs)。瞬时频率为:
finst(t)=f0±BTchtf_{inst}(t) = f_0 \pm \frac{B}{T_{ch}}tfinst(t)=f0±TchBt
这表明频率随时间线性变化,斜率为±B/Tch\pm B/T_{ch}±B/Tch,称为调频斜率。正号对应上调频(频率增加),负号对应下调频(频率减少)。
接收机处理过程包括几个关键步骤。首先,接收信号与发射信号混频产生差频信号,其频率与目标距离成正比。然后应用低通滤波器(LPF)来限制最大探测距离,滤波器截止频率决定了最大中频频率,从而决定了最大探测距离RmaxR_{max}Rmax。ADC采样率必须满足奈奎斯特准则,通常选择为最大中频频率的2-4倍以避免混叠。
在数字域,执行两维FFT处理:快时间FFT(沿每个调频)提取距离信息,慢时间FFT(跨多个调频)提取多普勒信息。窗函数(如汉宁窗或布莱克曼窗)用于减少旁瓣电平。最终生成的距离-多普勒图包含了目标的完整信息。
PMCW雷达系统详细描述
图1下部展示了PMCW雷达的系统框图,其架构与FMCW有显著不同。PMCW系统的核心是二进制相位调制,载波被二进制序列调制:
stx(t)=A∑k=0LC−1s(k)⋅rect(t−kTCTC)⋅exp(j2πf0t)s_{tx}(t) = A \sum_{k=0}^{L_C-1} s(k) \cdot rect\left(\frac{t-kT_C}{T_C}\right) \cdot \exp(j2\pi f_0t)stx(t)=Ak=0∑LC−1s(k)⋅rect(TCt−kTC)⋅exp(j2πf0t)
其中s(k)∈{+1,−1}s(k) \in \{+1, -1\}s(k)∈{+1,−1}是二进制序列的第kkk个码片,rect(t/TC)rect(t/T_C)rect(t/TC)是宽度为TCT_CTC的矩形脉冲,TC=1/BT_C = 1/BTC=1/B是码片持续时间。这种调制方式使得信号的相位在0和π之间切换,频谱展宽到约BBB的带宽。
接收端的关键操作是相关处理。接收信号首先与本地序列副本进行相关:
R(τ)=∑k=0LC−1r(k)⋅s∗(k−τ)R(\tau) = \sum_{k=0}^{L_C-1} r(k) \cdot s^*(k-\tau)R(τ)=k=0∑LC−1r(k)⋅s∗(k−τ)
其中r(k)r(k)r(k)是接收到的采样,s∗(k)s^*(k)s∗(k)是发射序列的复共轭。这个相关操作提供了处理增益LCL_CLC,显著提高了信噪比。
本研究考虑两种重要的二进制序列类型。最大长度序列(MLS)通过线性反馈移位寄存器生成,具有优良的自相关特性。对于长度LC=2P−1L_C = 2^P - 1LC=2P−1的MLS,自相关函数为:
RMLS(m)={LC,m=0−1,m≠0R_{MLS}(m) = \begin{cases} L_C, & m = 0 \\ -1, & m \neq 0 \end{cases}RMLS(m)={LC,−1,m=0m=0
几乎完美序列(APS)是另一类重要序列,它们的自相关旁瓣精确为零:
RAPS(m)={LC,m=00,0<∣m∣<LC/2undefined,∣m∣≥LC/2R_{APS}(m) = \begin{cases} L_C, & m = 0 \\ 0, & 0 < |m| < L_C/2 \\ \text{undefined}, & |m| \geq L_C/2 \end{cases}RAPS(m)=⎩⎨⎧LC,0,undefined,m=00<∣m∣<LC/2∣m∣≥LC/2
APS的零旁瓣特性使其在某些应用中优于MLS,但其有用范围限制在LC/2L_C/2LC/2,而MLS的有用范围覆盖整个序列长度。
干扰场景建模与功率分析
几何配置与传播模型
图2详细展示了相互干扰的典型几何场景。两辆装有雷达的汽车在道路上相向而行或同向行驶,它们的雷达波束可能相互照射。这种情况在实际道路环境中频繁发生,特别是在高速公路的对向车道或密集的城市交通中。干扰的严重程度取决于多个因素:雷达之间的距离、相对速度、天线方向图的重叠程度以及波形参数的相似性。
为了量化分析,我们采用雷达方程和Friis传输方程。对于目标回波,雷达方程给出:
PR,target=PTGTGRλ2σtgt(4π)3Rtgt4LTLRP_{R,target} = \frac{P_T G_T G_R \lambda^2 \sigma_{tgt}}{(4\pi)^3 R_{tgt}^4 L_T L_R}PR,target=(4π)3Rtgt4LTLRPTGTGRλ2σtgt
这个方程可以分解理解:PTGT/(4πRtgt2)P_T G_T/(4\pi R_{tgt}^2)PTGT/(4πRtgt2)是到达目标的功率密度,σtgt\sigma_{tgt}σtgt是目标的雷达截面积(RCS),它决定了反射功率,反射信号再次经过RtgtR_{tgt}Rtgt的传播损耗(4πRtgt2/λ2)(4\pi R_{tgt}^2/\lambda^2)(4πRtgt2/λ2),最后由接收天线以增益GRG_RGR接收。
对于雷达间干扰,使用Friis传输方程:
PR,intf=PTGTGRλ2(4π)2Rintf2LTLRP_{R,intf} = \frac{P_T G_T G_R \lambda^2}{(4\pi)^2 R_{intf}^2 L_T L_R}PR,intf=(4π)2Rintf2LTLRPTGTGRλ2
关键区别在于干扰信号只经过单向传播,因此功率随Rintf2R_{intf}^2Rintf2衰减,而不是目标回波的Rtgt4R_{tgt}^4Rtgt4。这种差异导致干扰信号在许多实际场景中占主导地位。
功率水平的定量分析
图3提供了详细的功率水平比较,展示了不同场景下的信号强度。图中包含了几个关键元素:两条目标回波曲线分别对应-3dBsm的行人(红色)和10dBsm的汽车(蓝色),它们的功率随距离急剧下降;多条水平或缓慢下降的干扰功率线,对应不同距离的干扰源(10m到110m);以及接收机热噪声水平(约-90dBm)。
从图3可以得出几个重要观察:在20m距离处,-3dBsm目标的回波功率约为-85dBm,而30m处的干扰源产生约-48dBm的干扰,相差37dB。这意味着干扰信号比期望信号强5000倍以上。即使对于10dBsm的较大目标,干扰仍然占主导地位。只有在极近距离(<5m)或干扰源很远(>100m)时,目标回波才可能超过干扰。
热噪声功率计算为:
PN=kTBF=−174+10log10(B)+F dBmP_N = kTBF = -174 + 10\log_{10}(B) + F \text{ dBm}PN=kTBF=−174+10log10(B)+F dBm
其中kkk是玻尔兹曼常数,TTT是温度(290K),BBB是带宽(Hz),FFF是噪声系数(dB)。对于1GHz带宽和10dB噪声系数,热噪声功率约为-84dBm。
干扰统计特性
在实际道路环境中,干扰具有随机性质。干扰源的出现时间、位置和参数都是随机的。干扰功率的概率分布取决于交通密度和道路几何。在高速公路场景中,对向车道的干扰最严重,因为相对速度高且天线主瓣对准。在城市环境中,干扰源更多但通常距离较近,且由于建筑物的遮挡,干扰可能是间歇性的。
非同步干扰的详细分析
非同步机制与参数设置
非同步是实际系统中的常态,通过多种机制实现。首先,不同制造商的雷达使用略有不同的参数。即使是相同型号的雷达,由于元器件容差也会有差异。本研究通过以下方式模拟非同步条件:载频偏差是最重要的非同步因素。晶振的典型精度为±20ppm,两个雷达之间可能有40ppm的相对偏差。在79GHz,这相当于3.16MHz的频率差,产生显著的多普勒效应。带宽差异通过使用略有不同的VCO调谐范围或DAC分辨率产生,典型差异为5%。对于FMCW雷达,调频持续时间的差异来自不同的系统时钟或帧率要求。对于PMCW雷达,码片速率的差异来自不同的ADC采样率。
F2F(FMCW对FMCW)干扰现象
图5展示了F2F干扰情况的详细结果。左图显示距离剖面,可以看到目标峰值仍然清晰可见,但噪声底从约-90dB提升到约-80dB。这种10dB的噪声底提升减少了雷达的动态范围,可能导致弱目标被掩盖。右图的多普勒切片显示干扰能量在整个多普勒范围内相对均匀分布,没有特定的集中区域。
F2F干扰的机制可以理解为两个调频信号的拍频。当两个具有不同参数的调频信号混频时:
sbeat(t)=exp(j2π(Δf0t+ΔB2Tcht2+ϕrandom))s_{beat}(t) = \exp\left(j2\pi\left(\Delta f_0 t + \frac{\Delta B}{2T_{ch}}t^2 + \phi_{random}\right)\right)sbeat(t)=exp(j2π(Δf0t+2TchΔBt2+ϕrandom))
瞬时频率随时间变化,在接收机带宽内扫描,产生类噪声的干扰。这种干扰的功率谱密度近似均匀,因此表现为噪声底的提升。
图10展示了一个特殊情况:干扰源使用上调频而受害者使用下调频。尽管调频斜率相反,干扰效果相似,仍然是约10dB的噪声底提升。这是因为非同步参数(载频偏差、带宽差异等)仍然导致拍频在整个频谱范围内变化。
F2P(FMCW对PMCW)干扰现象
图6展示了FMCW干扰PMCW的情况。PMCW接收机期望接收相位调制信号,但FMCW干扰是频率调制的。在PMCW相关器中,FMCW信号表现为非相关噪声。左图显示距离剖面中目标峰值保持清晰,噪声底提升约10dB。右图的多普勒切片显示干扰在多普勒维度也是均匀分布的。
数学上,FMCW信号与PMCW本地序列的相关为:
RF2P(τ)=∫0LCTCsFMCW(t)⋅sPMCW∗(t−τ)dtR_{F2P}(\tau) = \int_0^{L_CT_C} s_{FMCW}(t) \cdot s_{PMCW}^*(t-\tau) dtRF2P(τ)=∫0LCTCsFMCW(t)⋅sPMCW∗(t−τ)dt
由于FMCW的连续相位变化与PMCW的离散相位跳变不相关,相关输出近似为零均值的随机变量。
P2F(PMCW对FMCW)干扰现象
图7展示了PMCW干扰FMCW的情况。FMCW接收机的解线调处理将PMCW的相位跳变转换为宽带频谱。左图的距离剖面显示类似的10dB噪声底提升。右图显示干扰能量在多普勒域的分布。
PMCW信号在FMCW接收机中产生的中频信号包含丰富的频率成分:
fIF,P2F(t)=f0±∑kδ(t−kTC)∗hchip(t)f_{IF,P2F}(t) = f_0 \pm \sum_{k} \delta(t-kT_C) * h_{chip}(t)fIF,P2F(t)=f0±k∑δ(t−kTC)∗hchip(t)
其中δ(t−kTC)\delta(t-kT_C)δ(t−kTC)表示相位跳变时刻,hchip(t)h_{chip}(t)hchip(t)是码片响应。这产生了覆盖整个接收机带宽的频谱。
P2P(PMCW对PMCW)干扰现象
图8和图9展示了P2P干扰的详细特征。这是四种情况中最复杂的,因为两个PMCW系统都使用相关处理。图8的距离和多普勒剖面显示了轻微的"尖峰"特征,这在图9的三维网格图中更加明显。
P2P干扰的特殊性来自序列的互相关特性。对于两个不同的序列s1(k)s_1(k)s1(k)和s2(k)s_2(k)s2(k):
R12(m)=∑k=0LC−1s1(k)⋅s2((k+m)mod LC)R_{12}(m) = \sum_{k=0}^{L_C-1} s_1(k) \cdot s_2((k+m) \mod L_C)R12(m)=k=0∑LC−1s1(k)⋅s2((k+m)modLC)
当序列长度不同或使用不同序列类型时,互相关函数表现为伪随机。图9显示的细微结构反映了这种伪随机互相关的特性。这些结构可能被用于干扰检测和抑制算法。
同步干扰的深入分析
完全同步的灾难性影响
图11展示了完全同步P2P情况的戏剧性效果。当两个PMCW雷达使用相同的序列、码片速率和载频时,干扰信号通过相关器获得完整的处理增益。干扰源表现为一个强"目标",其表观速度为实际相对速度的一半(因为是单向传播而非往返)。图中显示的强峰值比真实目标高60-70dB,这是相关处理增益的直接结果。
这种情况下的信号强度可以定量计算:
Psync=Pintf⋅Gcoherent=Pintf⋅LC⋅M⋅NP_{sync} = P_{intf} \cdot G_{coherent} = P_{intf} \cdot L_C \cdot M \cdot NPsync=Pintf⋅Gcoherent=Pintf⋅LC⋅M⋅N
对于LC=2048L_C = 2048LC=2048、M=32M = 32M=32、N=256N = 256N=256的典型参数,总处理增益约为69dB。
载频偏移的影响
图12展示了引入40ppm载频偏移后的显著变化。3.16MHz的频率差产生了极高的多普勒频移,完全破坏了序列的相关性。图中显示的"脊线"结构反映了干扰能量集中在特定的多普勒频率。这个多普勒频率对应的等效速度为:
vequivalent=c⋅Δf2f0=3×108×3.16×1062×79×109≈6000 m/s=21600 km/hv_{equivalent} = \frac{c \cdot \Delta f}{2f_0} = \frac{3 \times 10^8 \times 3.16 \times 10^6}{2 \times 79 \times 10^9} \approx 6000 \text{ m/s} = 21600 \text{ km/h}vequivalent=2f0c⋅Δf=2×79×1093×108×3.16×106≈6000 m/s=21600 km/h
这个极端的速度远超过雷达的设计范围,导致相关峰完全消失。然而,能量并未消失,而是形成了横跨整个距离范围的脊线,仍然会影响检测性能。
不同序列的互相关效应
图13展示了使用不同序列但保持其他参数相同的情况。即使序列不同,40ppm的载频偏移仍然主导干扰特征。不同序列之间的互相关通常很低(对于MLS约为−10log10(LC)-10\log_{10}(L_C)−10log10(LC) dB),但高多普勒使这种互相关抑制失效。
脊线的形成可以理解为:干扰信号的多普勒频移使其在每个距离门产生相同的相位旋转率,导致能量沿特定多普勒频率聚集。这种效应与序列的具体选择关系不大,主要由载频偏移决定。
序列长度差异的扩散效应
图14展示了不同序列长度产生的复杂干扰模式。当LC1=1048L_{C1} = 1048LC1=1048和LC2=2040L_{C2} = 2040LC2=2040时,两个序列的周期性不匹配。这导致干扰能量在多个多普勒频率上分布,形成多条脊线。
脊线的数量和位置由以下关系决定:
Nridges=LCM(LC1,LC2)GCD(LC1,LC2)N_{ridges} = \frac{LCM(L_{C1}, L_{C2})}{GCD(L_{C1}, L_{C2})}Nridges=GCD(LC1,LC2)LCM(LC1,LC2)
其中LCMLCMLCM是最小公倍数,GCDGCDGCD是最大公约数。当GCDGCDGCD较小时,脊线数量增加,每条脊线的能量降低,这有利于减轻干扰影响。
码片速率差异的影响
图15展示了同时改变序列长度和码片速率的效果。不同的码片速率意味着两个雷达的时间尺度不同,这进一步破坏了周期性匹配。干扰能量在距离-多普勒平面上呈现更均匀的分布,接近非同步情况的特征。
码片速率差异Δfchip\Delta f_{chip}Δfchip产生的等效多普勒扩展为:
ΔfD=Δfchip⋅LCTCPI\Delta f_D = \Delta f_{chip} \cdot \frac{L_C}{T_{CPI}}ΔfD=Δfchip⋅TCPILC
其中TCPIT_{CPI}TCPI是相干处理间隔。这种扩展有助于将干扰能量分散到更大的频谱范围。
干扰缓解策略讨论
波形参数的动态调整
分析表明,保持雷达参数的多样性对于避免同步干扰至关重要。实际系统可以实施以下策略:
对于FMCW雷达,可以在每个帧或甚至每个调频后随机改变调频持续时间TchT_{ch}Tch。变化范围可以是±10%,这足以破坏与其他雷达的同步,同时不显著影响距离分辨率。调频斜率的方向(上/下)可以按照伪随机序列切换,增加另一维度的随机性。带宽可以在监管限制内小幅调整,例如在3.8-4.0GHz范围内跳变。
对于PMCW雷达,序列选择提供了丰富的多样性。可以维护一个序列库,包含不同长度和类型的序列。在每个相干处理间隔后,从库中随机选择新序列。序列长度的选择应该覆盖较大的范围,例如从512到4096,并且优选互质的长度以最小化GCD。码片速率可以通过调整ADC采样率或插值因子来微调,变化范围±2%通常足够。
载频的小幅调整(±100kHz范围)可以通过数字控制的本振实现。这种调整必须在不违反频谱规定的前提下进行。
干扰检测与识别
观察到的干扰模式为开发检测算法提供了基础。非同步干扰表现为均匀的噪声底提升,可以通过监测噪声统计特性来检测。具体方法包括:
计算距离-多普勒图中无目标区域的功率统计。正常情况下,这些区域应该只包含热噪声,功率分布接近瑞利分布。当存在干扰时,分布会改变,均值和方差都会增加。可以使用Kolmogorov-Smirnov检验或Anderson-Darling检验来检测分布的变化。而对于同步或准同步干扰产生的脊线结构,可以使用Hough变换或Radon变换来检测。这些变换能够识别图像中的直线结构,对应于距离-多普勒图中的脊线。一旦检测到脊线,可以在CFAR处理中对这些区域进行特殊处理,例如提高检测门限或完全排除这些区域。
自适应处理算法
基于干扰检测的结果,可以实施自适应处理策略。当检测到干扰时,系统可以:
调整CFAR算法的参数。例如,增加保护单元的数量以避免干扰泄漏到参考窗口,或者切换到更鲁棒的CFAR变体,如有序统计CFAR(OS-CFAR)或修剪均值CFAR(TM-CFAR)。
实施干扰对消技术。如果能够估计干扰的特征(如脊线的位置和强度),可以在频域进行陷波滤波。这需要谨慎实施以避免同时抑制真实目标。
采用时间或频率分集。通过在不同时间或频率上重复测量,可以利用干扰的时变特性。某些时刻或频率可能受干扰影响较小,可以通过适当的组合策略提高检测性能。
系统级协调
虽然本研究关注单个雷达对的相互作用,但实际部署需要考虑系统级的协调。未来的发展方向包括:
车辆间通信(V2V)可以用于协调雷达参数。车辆可以广播其雷达参数的哈希值或索引,其他车辆据此调整自己的参数以避免冲突。这不需要暴露详细的雷达参数,保护了系统的安全性。
基于位置的参数分配可以减少特定区域的干扰。例如,在高速公路的不同车道或不同方向可以优先使用不同的参数集。这需要精确的定位信息和预定义的分配策略。
认知雷达技术可以根据感知到的干扰环境动态优化波形参数。机器学习算法可以学习干扰模式并预测最佳的参数选择。
性能影响的定量评估
检测概率的降级
噪声底提升10dB对检测性能的影响可以通过雷达检测理论定量分析。对于给定的虚警概率PFAP_{FA}PFA,检测概率PDP_DPD由下式给出:
PD=Q(Q−1(PFA)−SNR)P_D = Q\left(Q^{-1}(P_{FA}) - \sqrt{SNR}\right)PD=Q(Q−1(PFA)−SNR)
其中QQQ是标准正态分布的互补累积分布函数,SNRSNRSNR是信噪比。当噪声(包括干扰)增加10dB时,有效SNR降低10dB。
例如,原始SNR为20dB、PFA=10−6P_{FA} = 10^{-6}PFA=10−6时,PD≈0.999P_D \approx 0.999PD≈0.999。噪声底提升10dB后,有效SNR变为10dB,PDP_DPD降至约0.5。这意味着一半的目标可能被漏检。
最大探测距离的减少
最大探测距离由最小可检测信号(MDS)决定:
Rmax=(PTGTGRλ2σtgt(4π)3PMDSLTLR)1/4R_{max} = \left(\frac{P_T G_T G_R \lambda^2 \sigma_{tgt}}{(4\pi)^3 P_{MDS} L_T L_R}\right)^{1/4}Rmax=((4π)3PMDSLTLRPTGTGRλ2σtgt)1/4
其中PMDS=PN⋅SNRminP_{MDS} = P_N \cdot SNR_{min}PMDS=PN⋅SNRmin,PNP_NPN是噪声功率,SNRminSNR_{min}SNRmin是最小所需SNR。
噪声底提升10dB意味着PMDSP_{MDS}PMDS增加10dB,导致最大探测距离减少(10)1/4≈1.78(10)^{1/4} \approx 1.78(10)1/4≈1.78倍,即减少约44%。这对长距离雷达的性能影响尤其严重。
虚警率的增加
干扰不仅降低检测概率,还可能增加虚警率。特别是同步干扰产生的强峰值很容易被误认为是真实目标。即使是非同步干扰的噪声底提升,也会增加噪声尖峰超过检测门限的概率。为了维持恒定的虚警率,CFAR算法必须相应提高检测门限,这进一步降低了对弱目标的检测能力。这种权衡是干扰环境下雷达系统面临的基本挑战。
结论与展望
本研究全面分析了FMCW和PMCW汽车雷达之间的相互干扰现象,得出了几个重要结论。首先,在非同步条件下,四种干扰组合(F2F、F2P、P2F、P2P)产生相似的影响,主要表现为约10dB的噪声底提升。这表明没有哪种波形本质上更容易受到干扰或产生更多干扰,波形选择应基于其他系统需求。其次,同步或准同步条件会导致严重的干扰,产生虚假目标或破坏检测能力。载频偏移、序列/调制参数的差异可以有效避免同步,但需要精心设计参数选择策略。参数的多样性和随机性是关键,系统应该实施动态参数调整以最小化同步概率。第三,观察到的干扰模式(均匀噪声提升、脊线结构等)为开发干扰检测和缓解算法提供了基础。自适应信号处理、改进的CFAR算法和系统级协调都是可行的解决方案。
附录:数学推导
A. FMCW雷达信号处理推导
对于FMCW雷达,发射信号为:
stx(t)=Aexp(j2π(f0t+B2Tcht2))s_{tx}(t) = A \exp\left(j2\pi\left(f_0t + \frac{B}{2T_{ch}}t^2\right)\right)stx(t)=Aexp(j2π(f0t+2TchBt2))
目标距离RRR处的回波信号延迟τ=2R/c\tau = 2R/cτ=2R/c,接收信号为:
srx(t)=Arexp(j2π(f0(t−τ)+B2Tch(t−τ)2))s_{rx}(t) = A_r \exp\left(j2\pi\left(f_0(t-\tau) + \frac{B}{2T_{ch}}(t-\tau)^2\right)\right)srx(t)=Arexp(j2π(f0(t−τ)+2TchB(t−τ)2))
混频后的中频信号:
sIF(t)=stx∗(t)⋅srx(t)=Arexp(j2π(f0τ+BTchtτ−B2Tchτ2))s_{IF}(t) = s_{tx}^*(t) \cdot s_{rx}(t) = A_r \exp\left(j2\pi\left(f_0\tau + \frac{B}{T_{ch}}t\tau - \frac{B}{2T_{ch}}\tau^2\right)\right)sIF(t)=stx∗(t)⋅srx(t)=Arexp(j2π(f0τ+TchBtτ−2TchBτ2))
展开并简化:
sIF(t)=Arexp(j2π(2Rf0c+2BRcTcht−2BR2c2Tch))s_{IF}(t) = A_r \exp\left(j2\pi\left(\frac{2Rf_0}{c} + \frac{2BR}{cT_{ch}}t - \frac{2BR^2}{c^2T_{ch}}\right)\right)sIF(t)=Arexp(j2π(c2Rf0+cTch2BRt−c2Tch2BR2))
对于汽车雷达的典型参数,第三项(二次项)可以忽略。中频频率为:
fIF=2BRcTchf_{IF} = \frac{2BR}{cT_{ch}}fIF=cTch2BR
因此距离分辨率为:
ΔR=c2B\Delta R = \frac{c}{2B}ΔR=2Bc
多普勒效应引入额外的频移:
fD=2vλ=2vf0cf_D = \frac{2v}{\lambda} = \frac{2vf_0}{c}fD=λ2v=c2vf0
其中vvv是径向速度。完整的中频信号包含距离和多普勒信息:
ftotal=fIF+fD=2BRcTch+2vf0cf_{total} = f_{IF} + f_D = \frac{2BR}{cT_{ch}} + \frac{2vf_0}{c}ftotal=fIF+fD=cTch2BR+c2vf0
B. PMCW雷达相关处理推导
对于PMCW雷达,发射信号为:
stx(t)=∑k=0LC−1s(k)⋅p(t−kTC)⋅exp(j2πf0t)s_{tx}(t) = \sum_{k=0}^{L_C-1} s(k) \cdot p(t-kT_C) \cdot \exp(j2\pi f_0t)stx(t)=k=0∑LC−1s(k)⋅p(t−kTC)⋅exp(j2πf0t)
其中p(t)p(t)p(t)是码片脉冲形状,通常是矩形脉冲:
p(t)={1,0≤t<TC0,otherwisep(t) = \begin{cases}
1, & 0 \leq t < T_C \\
0, & \text{otherwise}
\end{cases}p(t)={1,0,0≤t<TCotherwise
接收信号经过相关处理:
R(τ)=∫0LCTCsrx(t)⋅stx∗(t−τ)dtR(\tau) = \int_{0}^{L_CT_C} s_{rx}(t) \cdot s_{tx}^*(t-\tau) dtR(τ)=∫0LCTCsrx(t)⋅stx∗(t−τ)dt
将积分分解为码片级别的求和:
R(τ)=∑k=0LC−1∑m=0LC−1s(k)⋅s∗(m)⋅∫kTC(k+1)TCp(t−kTC)⋅p(t−τ−mTC)dtR(\tau) = \sum_{k=0}^{L_C-1} \sum_{m=0}^{L_C-1} s(k) \cdot s^*(m) \cdot \int_{kT_C}^{(k+1)T_C} p(t-kT_C) \cdot p(t-\tau-mT_C) dtR(τ)=k=0∑LC−1m=0∑LC−1s(k)⋅s∗(m)⋅∫kTC(k+1)TCp(t−kTC)⋅p(t−τ−mTC)dt
当τ=nTC\tau = nT_Cτ=nTC(整数倍码片延迟)时:
R(nTC)=TC∑k=0LC−1s(k)⋅s∗((k−n)mod LC)R(nT_C) = T_C \sum_{k=0}^{L_C-1} s(k) \cdot s^*((k-n) \mod L_C)R(nTC)=TCk=0∑LC−1s(k)⋅s∗((k−n)modLC)
这就是序列的循环自相关函数。对于理想的自相关函数:
Rss(n)={LC⋅TC,n=0ϵ⋅TC,n≠0R_{ss}(n) = \begin{cases}
L_C \cdot T_C, & n = 0 \\
\epsilon \cdot T_C, & n \neq 0
\end{cases}Rss(n)={LC⋅TC,ϵ⋅TC,n=0n=0
处理增益计算:
Gp=10log10(PoutPin)=10log10(LC⋅M⋅N)G_p = 10\log_{10}\left(\frac{P_{out}}{P_{in}}\right) = 10\log_{10}(L_C \cdot M \cdot N)Gp=10log10(PinPout)=10log10(LC⋅M⋅N)
其中LCL_CLC是相关增益,MMM是相干累积增益,NNN是FFT处理增益。
C. 干扰功率谱分析
当FMCW雷达受到另一个FMCW雷达干扰时,两个调频信号的混频产生:
sIF,intf(t)=Aintfexp(j2π(Δf0t+ΔB2Tcht2+B1Tch,1t−B2Tch,2t))s_{IF,intf}(t) = A_{intf} \exp\left(j2\pi\left(\Delta f_0 t + \frac{\Delta B}{2T_{ch}}t^2 + \frac{B_1}{T_{ch,1}}t - \frac{B_2}{T_{ch,2}}t\right)\right)sIF,intf(t)=Aintfexp(j2π(Δf0t+2TchΔBt2+Tch,1B1t−Tch,2B2t))
简化为:
sIF,intf(t)=Aintfexp(j2π(Δf0t+αt2+βt))s_{IF,intf}(t) = A_{intf} \exp\left(j2\pi\left(\Delta f_0 t + \alpha t^2 + \beta t\right)\right)sIF,intf(t)=Aintfexp(j2π(Δf0t+αt2+βt))
其中:
α=B12Tch,1−B22Tch,2,β=B1Tch,1−B2Tch,2\alpha = \frac{B_1}{2T_{ch,1}} - \frac{B_2}{2T_{ch,2}}, \quad \beta = \frac{B_1}{T_{ch,1}} - \frac{B_2}{T_{ch,2}}α=2Tch,1B1−2Tch,2B2,β=Tch,1B1−Tch,2B2
瞬时频率为:
finst(t)=Δf0+2αt+βf_{inst}(t) = \Delta f_0 + 2\alpha t + \betafinst(t)=Δf0+2αt+β
这是一个随时间线性变化的频率,在观察时间内扫过整个频谱,产生类噪声的干扰。
功率谱密度可以通过计算信号的傅里叶变换得到:
Sintf(f)=∣FT{sIF,intf(t)}∣2S_{intf}(f) = |FT\{s_{IF,intf}(t)\}|^2Sintf(f)=∣FT{sIF,intf(t)}∣2
对于线性调频干扰,功率谱近似均匀分布在扫频范围内:
Sintf(f)≈{PintfBsweep,fmin<f<fmax0,otherwiseS_{intf}(f) \approx \begin{cases}
\frac{P_{intf}}{B_{sweep}}, & f_{min} < f < f_{max} \\
0, & \text{otherwise}
\end{cases}Sintf(f)≈{BsweepPintf,0,fmin<f<fmaxotherwise
其中BsweepB_{sweep}Bsweep是干扰信号的扫频带宽。
D. 多普勒效应分析
对于相对速度vvv的目标,多普勒频移为:
fD=2vf0cf_D = \frac{2vf_0}{c}fD=c2vf0
在79GHz,多普勒系数为:
KD=2f0c=2×79×1093×108=526.7 Hz/(m/s)K_D = \frac{2f_0}{c} = \frac{2 \times 79 \times 10^9}{3 \times 10^8} = 526.7 \text{ Hz/(m/s)}KD=c2f0=3×1082×79×109=526.7 Hz/(m/s)
即每1m/s相对速度产生约527Hz的多普勒频移。
对于40ppm的载频偏差:
Δf=40×10−6×79×109=3.16 MHz\Delta f = 40 \times 10^{-6} \times 79 \times 10^9 = 3.16 \text{ MHz}Δf=40×10−6×79×109=3.16 MHz
等效速度为:
veq=ΔfKD=3.16×106526.7≈6000 m/s=21600 km/hv_{eq} = \frac{\Delta f}{K_D} = \frac{3.16 \times 10^6}{526.7} \approx 6000 \text{ m/s} = 21600 \text{ km/h}veq=KDΔf=526.73.16×106≈6000 m/s=21600 km/h
这个极高的等效速度解释了为什么载频偏差会在多普勒维度产生强烈的脊线效应。
速度分辨率由观察时间决定:
Δv=c2f0Tobs=λ2Tobs\Delta v = \frac{c}{2f_0 T_{obs}} = \frac{\lambda}{2T_{obs}}Δv=2f0Tobsc=2Tobsλ
对于100ms的观察时间:
Δv=3.8×10−32×0.1=0.019 m/s\Delta v = \frac{3.8 \times 10^{-3}}{2 \times 0.1} = 0.019 \text{ m/s}Δv=2×0.13.8×10−3=0.019 m/s
E. 同步条件下的干扰峰值
完全同步时,干扰信号通过匹配滤波器的输出为:
y(t)=∫−∞∞sintf(τ)⋅h∗(t−τ)dτy(t) = \int_{-\infty}^{\infty} s_{intf}(\tau) \cdot h^*(t-\tau) d\tauy(t)=∫−∞∞sintf(τ)⋅h∗(t−τ)dτ
其中h(t)h(t)h(t)是匹配滤波器脉冲响应。对于完全匹配的情况,这等价于自相关函数的峰值。
输出功率为:
Ppeak=∣y(0)∣2=∣∫−∞∞∣sintf(t)∣2dt∣2=Pintf⋅Tint⋅GcoherentP_{peak} = |y(0)|^2 = \left|\int_{-\infty}^{\infty} |s_{intf}(t)|^2 dt\right|^2 = P_{intf} \cdot T_{int} \cdot G_{coherent}Ppeak=∣y(0)∣2=∫−∞∞∣sintf(t)∣2dt2=Pintf⋅Tint⋅Gcoherent
其中TintT_{int}Tint是积分时间,GcoherentG_{coherent}Gcoherent是相干处理增益。
对于PMCW系统:
Gcoherent=LC⋅M⋅NG_{coherent} = L_C \cdot M \cdot NGcoherent=LC⋅M⋅N
对于典型参数LC=2048L_C = 2048LC=2048、M=32M = 32M=32、N=256N = 256N=256:
Gcoherent,dB=10log10(2048×32×256)=69.2 dBG_{coherent,dB} = 10\log_{10}(2048 \times 32 \times 256) = 69.2 \text{ dB}Gcoherent,dB=10log10(2048×32×256)=69.2 dB
这解释了为什么同步干扰会产生如此强的虚假目标,其功率可能比真实目标高60-70dB。
F. 序列互相关分析
两个不同序列s1(k)s_1(k)s1(k)和s2(k)s_2(k)s2(k)的互相关函数定义为:
R12(m)=∑k=0LC−1s1(k)⋅s2∗((k+m)mod LC)R_{12}(m) = \sum_{k=0}^{L_C-1} s_1(k) \cdot s_2^*((k+m) \mod L_C)R12(m)=k=0∑LC−1s1(k)⋅s2∗((k+m)modLC)
对于随机二进制序列,互相关值近似服从正态分布:
R12(m)∼N(0,LC)R_{12}(m) \sim \mathcal{N}(0, L_C)R12(m)∼N(0,LC)
归一化互相关的期望值和方差为:
E[R12(m)LC]=0,Var[R12(m)LC]=1LCE\left[\frac{R_{12}(m)}{L_C}\right] = 0, \quad \text{Var}\left[\frac{R_{12}(m)}{L_C}\right] = \frac{1}{L_C}E[LCR12(m)]=0,Var[LCR12(m)]=LC1
因此,互相关旁瓣电平的均方根值约为:
RMS sidelobe=1LC\text{RMS sidelobe} = \frac{1}{\sqrt{L_C}}RMS sidelobe=LC1
以dB表示:
SidelobedB=−10log10(LC)\text{Sidelobe}_{dB} = -10\log_{10}(L_C)SidelobedB=−10log10(LC)
对于LC=2048L_C = 2048LC=2048的序列,预期的互相关旁瓣约为-33dB。
G. 脊线形成机制
当两个PMCW系统有载频偏差Δf\Delta fΔf时,接收信号包含额外的相位旋转:
srx,intf(t)=sintf(t)⋅exp(j2πΔf⋅t)s_{rx,intf}(t) = s_{intf}(t) \cdot \exp(j2\pi \Delta f \cdot t)srx,intf(t)=sintf(t)⋅exp(j2πΔf⋅t)
在相关处理中,这个相位旋转导致:
R(τ,t)=R0(τ)⋅exp(j2πΔf⋅t)R(\tau, t) = R_0(\tau) \cdot \exp(j2\pi \Delta f \cdot t)R(τ,t)=R0(τ)⋅exp(j2πΔf⋅t)
其中R0(τ)R_0(\tau)R0(τ)是无频偏时的相关输出。
在慢时间FFT后,能量集中在多普勒频率Δf\Delta fΔf处,形成脊线。脊线的宽度由相干处理时间决定:
Δfridge=1TCPI\Delta f_{ridge} = \frac{1}{T_{CPI}}Δfridge=TCPI1
对于100ms的CPI,脊线宽度约为10Hz,相对于3.16MHz的中心频率非常窄,表现为尖锐的脊线。