汽车雷达信号处理:研究方向与实践挑战
F. Engels, P. Heidenreich, M. Wintermantel, L. Stäcker, M. Al Kadi and A. M. Zoubir, “Automotive Radar Signal Processing: Research Directions and Practical Challenges,” in IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 865-878, June 2021, doi: 10.1109/JSTSP.2021.3063666.
引言
汽车雷达作为高级驾驶辅助系统(ADAS)的关键技术之一,在实现高度自动驾驶(HAD)的进程中扮演着不可或缺的角色。与激光雷达(LiDAR)和相机技术相比,雷达技术的显著优势在于其在恶劣天气条件下的稳健运行能力、更远的探测距离、直接测量相对速度的能力以及经济可承受性。随着汽车行业对环境感知能力要求的不断提升,雷达技术正在从早期仅需要分辨相邻车道中的整车目标,发展到如今需要解析扩展目标的多个反射点,以便通过点集结构进行分类或估计目标的尺寸和方向。当前汽车雷达面临的主要技术挑战包括提升角度分辨率、增强目标分类能力以及干扰抑制。为了提高分辨能力,需要增加带宽、阵列孔径和阵列元素数量,从而获得更好的距离和角度分辨率。虽然带宽最终受到76至81 GHz可用频段的限制,物理阵列孔径通常受到汽车制造商典型要求的限制,但现代汽车雷达传感器通过采用多输入多输出(MIMO)原理来增加有效阵列孔径和阵列元素数量,实现了硬件和成本效率的优化。
信号模型
FMCW调制与SISO模型
考虑一个由M个调频脉冲序列组成的理想FMCW发射信号:
stx(t)=∑m=0M−1Π(t−tmT)cos[ϕLO(t−tm)]s_{tx}(t) = \sum_{m=0}^{M-1} \Pi\left(\frac{t-t_m}{T}\right) \cos[\phi_{LO}(t-t_m)]stx(t)=m=0∑M−1Π(Tt−tm)cos[ϕLO(t−tm)]
其中Π(⋅)\Pi(\cdot)Π(⋅)是单位脉冲函数,在区间[0,1)[0,1)[0,1)内为1,其他地方为0;ttt是连续时间变量;tmt_mtm是脉冲重复时间(PRT);TTT是脉冲持续时间;本地振荡器(LO)的相位为:
ϕLO(t)=2πft+παt2\phi_{LO}(t) = 2\pi ft + \pi \alpha t^2ϕLO(t)=2πft+παt2
这里fff是载波频率,α\alphaα是调频斜率。
发射信号经目标反射后,以传播延迟τ\tauτ和复值响应参数sss被接收。通过拉伸处理(stretch processing),即与LO参考信号直接IQ混频并低通滤波,得到基带信号:
x(t)=∑m=0M−1Π(t−tm−τT)s⋅ej[ϕLO(t−tm)−ϕLO(t−tm−τ)]x(t) = \sum_{m=0}^{M-1} \Pi\left(\frac{t-t_m-\tau}{T}\right) s \cdot e^{j[\phi_{LO}(t-t_m)-\phi_{LO}(t-t_m-\tau)]}x(t)=m=0∑M−1Π(Tt−tm−τ)s⋅ej[ϕLO(t−tm)−ϕLO(t−tm−τ)]
≈∑m=0M−1s⋅ej2π[fτ+α(t−tm)τ−α2τ2]\approx \sum_{m=0}^{M-1} s \cdot e^{j2\pi[f\tau + \alpha(t-t_m)\tau - \frac{\alpha}{2}\tau^2]}≈m=0∑M−1s⋅ej2π[fτ+α(t−tm)τ−2ατ2]
对于距离为rrr、恒定相对径向速度为vvv的目标,双向传播延迟为τ(t)=2(r+vt)/c\tau(t) = 2(r+vt)/cτ(t)=2(r+vt)/c。代入上式并在时刻tlt_ltl对每个脉冲采样,得到:
x(t)∣t=tm+tl≈s⋅ej4π[fcr+αcrtl+fcvtm]⋅ej4πf+αtmcvtlx(t)|_{t=t_m+t_l} \approx s \cdot e^{j4\pi[\frac{f}{c}r + \frac{\alpha}{c}rt_l + \frac{f}{c}vt_m]} \cdot e^{j4\pi\frac{f+\alpha t_m}{c}vt_l}x(t)∣t=tm+tl≈s⋅ej4π[cfr+cαrtl+cfvtm]⋅ej4πcf+αtmvtl
这个模型包含一个二维复指数,其快时间频率对应于距离,慢时间频率对应于相对径向速度。最后一项对应于距离迁移和多普勒频移效应,对于当前的汽车雷达系统参数通常可以忽略。
MIMO扩展模型
将单目标SISO模型扩展到K个目标和MIMO情况,考虑Q个位于pq\mathbf{p}_qpq位置的发射天线和N个位于pn\mathbf{p}_npn位置的接收天线,假设发射和接收阵列都满足窄带假设:
x(l,m,n)=∑k=1K∑q=1Qam,qskej4π[fcrk+αcrktl+fcvktm]ej2πfc[akTpn+dkTpq]x(l,m,n) = \sum_{k=1}^{K} \sum_{q=1}^{Q} a_{m,q}s_k e^{j4\pi[\frac{f}{c}r_k + \frac{\alpha}{c}r_kt_l + \frac{f}{c}v_kt_m]} e^{j2\pi\frac{f}{c}[\mathbf{a}_k^T\mathbf{p}_n + \mathbf{d}_k^T\mathbf{p}_q]}x(l,m,n)=k=1∑Kq=1∑Qam,qskej4π[cfrk+cαrktl+cfvktm]ej2πcf[akTpn+dkTpq]
其中l=0,...,L−1l = 0,...,L-1l=0,...,L−1是每个脉冲的快时间采样,m=0,...,M−1m = 0,...,M-1m=0,...,M−1是慢时间采样,n=0,...,N−1n = 0,...,N-1n=0,...,N−1是接收通道索引,am,qa_{m,q}am,q是每个发射通道的慢时间MIMO编码。参数sks_ksk、rkr_krk、vkv_kvk、dk\mathbf{d}_kdk和ak\mathbf{a}_kak分别是复响应参数、距离、相对径向速度、出发方向(DOD)和到达方向(DOA)。
慢时间MIMO方案主要有两种配置:时分复用和相位编码。时分复用中,每次只有一个发射通道处于活动状态,这导致最优的通道分离,但有效测量时间减少,信噪比增益和相对径向速度的无模糊测量间隔都减少了Q倍。相位编码中,所有发射通道同时处于活动状态,允许最优利用测量时间和最优信噪比增益。
干扰抑制
在当今交通场景中,多辆汽车都配备了汽车雷达,干扰的发生非常普遍。对于使用调频序列调制的雷达传感器,当干扰信号的瞬时频率落入受害者接收滤波器的通带时就会发生干扰。这通常限于短时隙,因此只有少量基带采样受到干扰影响。
一种流行且简单的干扰抑制技术是识别并随后将受干扰影响的采样置零。然而,在具有密集目标结构的交通环境中,当强目标响应掩盖干扰贡献时,干扰识别变得具有挑战性。为了避免高功率杂散峰,可以采用调制参数的伪随机变化来抵消快时间和慢时间傅里叶变换中干扰能量的相干积分:
tm=mTP+ΔtP,m,tl,m=lTS+ΔtS,mt_m = mT_P + \Delta t_{P,m}, \quad t_{l,m} = lT_S + \Delta t_{S,m}tm=mTP+ΔtP,m,tl,m=lTS+ΔtS,m
其中TPT_PTP和TST_STS分别是恒定的PRT和采样间隔,而ΔtP,m\Delta t_{P,m}ΔtP,m和ΔtS,m\Delta t_{S,m}ΔtS,m是相应的伪随机变化,从具有适当边界的零均值均匀分布中抽取。
同样,当使用带有相位编码的慢时间MIMO时,相移器可以重新用于干扰抑制:
am,q=ejϕm,q+jΔϕma_{m,q} = e^{j\phi_{m,q} + j\Delta\phi_m}am,q=ejϕm,q+jΔϕm
其中Δϕm\Delta\phi_mΔϕm是附加的伪随机变化,从[0,2π)[0, 2\pi)[0,2π)上的均匀分布中抽取。在慢时间傅里叶变换之前用e−jΔϕme^{-j\Delta\phi_m}e−jΔϕm进行补偿会导致干扰能量在所有频率上扩散,而目标能量集中在不同的频率区域。
处理链概述
图1:实用处理链概述
该图展示了完整的汽车雷达信号处理流程。从左到右,基带采样首先经过干扰置零处理,然后进入预处理模块(包括快时间FFT、MIMO解调、慢时间FFT和波束形成),生成4D雷达立方体。接下来通过目标检测和参数估计创建目标列表。静止目标进入占用网格映射和障碍物计算,移动目标则进行目标跟踪和道路用户分类。顶部显示了性能监测的两个重要部分:静止目标处理(占用网格映射和障碍物分类)以及移动目标处理(目标跟踪和道路用户分类)。
预处理块包括快时间傅里叶变换、MIMO解调、慢时间傅里叶变换和波束形成,用于将基带采样转换为4D雷达立方体,其维度为距离、相对径向速度、方位角和仰角。目标检测辅以参数估计,用于创建目标列表。静止目标通过占用网格映射和障碍物计算进一步处理,而移动目标则在目标跟踪和道路用户分类中进一步处理。
预处理详细步骤
为了方便展示预处理过程,我们简化模型,限定为均匀快时间采样tl=lTSt_l = lT_Stl=lTS、均匀PRT tm=mTPt_m = mT_Ptm=mTP、水平和垂直均匀线性阵列的接收和发射天线,元素间距为dyd_ydy和dzd_zdz。假设直接信号传播(即DOD和DOA相等),我们有:
ak=dk=[cos(θk)cos(ϕk)cos(θk)sin(ϕk)sin(θk)]\mathbf{a}_k = \mathbf{d}_k = \begin{bmatrix} \cos(\theta_k)\cos(\phi_k) \\ \cos(\theta_k)\sin(\phi_k) \\ \sin(\theta_k) \end{bmatrix}ak=dk=cos(θk)cos(ϕk)cos(θk)sin(ϕk)sin(θk)
pn=[0ndy0],pq=[00qdz]\mathbf{p}_n = \begin{bmatrix} 0 \\ nd_y \\ 0 \end{bmatrix}, \quad \mathbf{p}_q = \begin{bmatrix} 0 \\ 0 \\ qd_z \end{bmatrix}pn=0ndy0,pq=00qdz
图2:MIMO URA示例
该图展示了两种不同的物理发射和接收天线配置(左侧),它们产生相同的虚拟URA(右侧)。上方配置显示了传统的分离式发射和接收天线阵列,需要较大的物理空间。下方配置展示了优化的交错式布局,可以用大约一半的物理空间实现相同的虚拟阵列。图中用黑点表示天线元素,虚拟URA在右侧以网格形式展示,共有192个虚拟阵列元素(16个接收天线×12个发射天线)。
代入MIMO模型得到:
x(l,m,n)=∑k=1K∑q=0Q−1am,qskej(λkl+μkm+νkn+ξkq)x(l,m,n) = \sum_{k=1}^{K} \sum_{q=0}^{Q-1} a_{m,q}s_k e^{j(\lambda_k l + \mu_k m + \nu_k n + \xi_k q)}x(l,m,n)=k=1∑Kq=0∑Q−1am,qskej(λkl+μkm+νkn+ξkq)
其中:
- λk=4παrkTS/c\lambda_k = 4\pi\alpha r_k T_S/cλk=4παrkTS/c和μk=4πfvkTP/c\mu_k = 4\pi f v_k T_P/cμk=4πfvkTP/c分别是对应于距离和相对径向速度的频率
- νk=2πfdycos(θk)sin(ϕk)/c\nu_k = 2\pi f d_y \cos(\theta_k)\sin(\phi_k)/cνk=2πfdycos(θk)sin(ϕk)/c和ξk=2πfdzsin(θk)/c\xi_k = 2\pi f d_z \sin(\theta_k)/cξk=2πfdzsin(θk)/c分别是水平和垂直空间频率
- ϕk\phi_kϕk是方位角,θk\theta_kθk是仰角
该模型是具有频率λk\lambda_kλk、μk\mu_kμk、νk\nu_kνk和ξk\xi_kξk的4D复指数的叠加。一旦通过MIMO解调解开Q个发射分量,就可以通过4D频率估计获得目标参数。
预处理的具体步骤总结如下:
Y(λ,μ,n,q)=∑l=0L−1∑m=0M−1wλ(l)wμ(m)am,q∗x(l,m,n)e−j(λl+μm)Y(\lambda, \mu, n, q) = \sum_{l=0}^{L-1} \sum_{m=0}^{M-1} w_\lambda(l) w_\mu(m) a_{m,q}^* x(l,m,n) e^{-j(\lambda l + \mu m)}Y(λ,μ,n,q)=l=0∑L−1m=0∑M−1wλ(l)wμ(m)am,q∗x(l,m,n)e−j(λl+μm)
其中wλ(l)w_\lambda(l)wλ(l)和wμ(m)w_\mu(m)wμ(m)是快时间和慢时间窗函数。窗函数对于控制频谱泄漏和防止弱目标被强目标掩盖很重要。
波束形成在n和q维度上计算,对应于接收和发射通道,等效于URA配置中的垂直和水平阵列索引。波束形成的结果是雷达立方体:
X(λ,μ,ν,ξ)=∑n=0N−1∑q=0Q−1wν(n)wξ(q)Y(λ,μ,n,q)e−j(νn+ξq)X(\lambda, \mu, \nu, \xi) = \sum_{n=0}^{N-1} \sum_{q=0}^{Q-1} w_\nu(n) w_\xi(q) Y(\lambda, \mu, n, q) e^{-j(\nu n + \xi q)}X(λ,μ,ν,ξ)=n=0∑N−1q=0∑Q−1wν(n)wξ(q)Y(λ,μ,n,q)e−j(νn+ξq)
目标列表创建
雷达立方体代表了一个有用的原始数据接口,其中目标能量集中在不同的频率区域,而噪声能量分布在所有频率上。为了获得更紧凑的表示,通过目标检测和参数估计创建目标列表。
为了对噪声统计的变化具有鲁棒性,通常采用恒虚警率(CFAR)功率检测。雷达立方体的功率值与基于局部计算的噪声功率统计的阈值进行比较。CFAR功率检测通常由峰值查找和旁瓣阈值化补充,后者用于从强目标中排除加窗伪影。
假设所有目标都被解析,频率λk\lambda_kλk、μk\mu_kμk、νk\nu_kνk和ξk\xi_kξk处的峰值位置可以直接用于计算相应的参数rkr_krk、vkv_kvk、ϕk\phi_kϕk和θk\theta_kθk。通常使用局部邻域的插值来获得更准确的参数估计。
在关键的汽车雷达使用情况下,如紧密间隔的目标或多径传播,关键目标可能无法解析,这可能导致偏置的峰值位置或出现杂散峰。在这种情况下,可以通过将具有多个目标的局部信号模型拟合到检测峰值的邻域来获得目标参数:
X(λ,μ,ν,ξ)=∑k=1KskWλ(λ−λk)Wμ(μ−μk)Wν(ν−νk)Wξ(ξ−ξk)X(\lambda, \mu, \nu, \xi) = \sum_{k=1}^{K} s_k W_\lambda(\lambda - \lambda_k) W_\mu(\mu - \mu_k) W_\nu(\nu - \nu_k) W_\xi(\xi - \xi_k)X(λ,μ,ν,ξ)=k=1∑KskWλ(λ−λk)Wμ(μ−μk)Wν(ν−νk)Wξ(ξ−ξk)
其中Wλ(λ)W_\lambda(\lambda)Wλ(λ)、Wμ(μ)W_\mu(\mu)Wμ(μ)、Wν(ν)W_\nu(\nu)Wν(ν)、Wξ(ξ)W_\xi(\xi)Wξ(ξ)分别是快时间、慢时间、水平和垂直窗函数的傅里叶变换。
高性能雷达示例
表II收集了系列生产HPR、LRR和SRR的性能参数,即分辨率限制、无模糊测量间隔和检测目标的最大数量。分辨率限制指定了成功参数估计所需的最小目标分离。距离和速度分辨率限制与总带宽和传输时间成反比,有限的无模糊距离和速度测量间隔是由于快时间和慢时间混叠。
参数 | HPR | LRR | SRR |
---|---|---|---|
距离分辨率 | 0.2 m | 1.5 m | 1.8 m |
速度分辨率 | 0.15 m/s | 0.28 m/s | 0.5 m/s |
方位角分辨率 | < 2° | 4.5° | 7° |
仰角分辨率 | 4° | - | - |
最大距离 | 320 m | 250 m | 100 m |
方位角FOV | ±60° | ±60° | ±75° |
仰角FOV | ±10° | - | - |
最大目标数 | > 1500 | 300 | 200 |
HPR与LRR和SRR相比的主要差异在于0.2米的距离分辨率、320米的最大距离和小于2°的方位角分辨率。值得注意的是,只有HPR提供单周期仰角测量能力。
图3:高速公路数据示例
该图展示了典型高速公路场景中HPR的性能。顶部是带有放大区域的相机图像,显示了对向车道上的两辆车(car 1和truck 1)、同向车道上的两辆车(car 2和truck 2)以及远处的桥梁。底部左侧的鸟瞰图(BEV)使用颜色编码显示目标速度,蓝色表示静止或低速目标(-15到0 m/s),黄绿色表示高速目标(10-15 m/s)。底部右侧的BEV显示目标高度,从深蓝色(0米)到黄色(20米)。图中清晰展示了320米的探测距离、200米外桥梁的直接仰角测量能力,以及每辆车的多个检测点形成的密集点云。
图4:恶劣天气条件下的数据示例
该图展示了雾天条件下的高速公路场景。顶部的相机图像显示能见度极差,放大区域几乎看不清任何车辆。然而,底部的雷达BEV清晰显示了100米以上的三辆车(在相机图像中完全不可见)。左侧BEV的速度编码显示了移动和静止目标,右侧BEV的高度编码展示了目标的垂直分布。这充分证明了雷达在恶劣天气条件下的稳健性,检测距离几乎不受影响。
图5:城市场景数据示例
该图展示了复杂城市环境中的目标检测。顶部使用两个相机(前向和右侧)覆盖更大的FOV。场景显示自车正在右转,对向车道有车辆接近,右侧有骑自行车者准备横穿。底部的BEV被裁剪为40米×±20米范围以突出细节。速度编码的BEV显示了不同目标的运动状态,可以看到接近车辆和骑自行车者的多个检测点,形成了与目标形状匹配的点云,展示了明确的分类潜力。
机器学习应用
汽车场景理解在基于相机和LiDAR的目标检测和分类方面在过去几年取得了显著进展。这主要归功于大型标注数据集(如KITTI)的可用性以及机器学习特别是深度卷积神经网络(CNN)的快速发展。不幸的是,广泛使用和可比较的雷达数据集尚未公开,尽管现代高性能雷达可以为高级场景理解提供密集的点云信息。
静态环境分类
对于静态环境的分类,CNN技术被应用于从静止目标计算的占用网格,以获得语义雷达网格。将基于雷达的占用网格的移动窗口部分输入CNN分类器,目标类别包括:汽车、建筑物、路缘石、杆子、植被和其他。这种方法在编码器-解码器结构的语义分割CNN中得到增强,将带有雷达横截面(RCS)直方图信息的占用网格输入其中。
计算的占用网格图也可以用于道路路线估计或自由空间估计。深度学习方法已被用于道路路线估计,使用语义分割CNN进行自由空间估计和道路场景理解。使用雷达网格图的车道标记检测也已被提出。
移动目标分类
移动目标分类的流行方法是首先使用DBSCAN算法对目标数据进行聚类,然后使用手工制作的特征对结果聚类进行分类。这种方法已被专门研究用于使用多个分类器的行人检测,以及鬼影目标检测。随机森林分类器已被应用,目标类别包括:汽车、行人、行人群、骑自行车者、卡车和其他。
该方法通过高级特征选择得到改进,并通过两阶段聚类进行扩展。一个明显的缺点是聚类可能容易出错,因此多个接近的目标可能聚集在一起,或者大型目标可能被分成多个聚类,这可能导致错误分类和错误目标创建。这些问题可以通过单独分类每个目标来解决。为此,PointNet++方法被应用于雷达点云。PointNet++是一种具有分层结构的DNN,可以直接应用于点云以获得语义分割。
使用独特多普勒特征的易受伤害道路用户的检测和分类可以通过结合低级数据(雷达数据立方体,特别是距离-多普勒平面)来改进。使用这种低级数据的缺点是无法应用高级参数估计,如距离插值或高分辨率角度估计。为了解决这个问题,最近提出了一种混合方法,用于移动目标分类,同时使用目标列表和雷达数据立方体的摘录。
雷达-相机融合
虽然大多数早期的自动驾驶汽车原型严重依赖高端LiDAR技术,但当今系列生产车辆中的大多数ADAS和HAD依赖于雷达和相机传感器的融合。在汽车行业,这种组合目前似乎是最相关的传感器组合,享有适度成本、令人愉悦的传感器集成以及提供互补环境信息的好处。特别是,雷达传感器提供准确和直接的距离和径向相对速度测量,而相机提供准确的方位角和仰角测量以及丰富的语义上下文信息。
数据融合的传统方法通常基于卡尔曼滤波器框架。在数据对齐(即将测量转换为公共坐标系)之后,进行测量到测量和测量到轨迹关联的数据关联。随后,通过状态预测和状态估计的卡尔曼滤波为每个轨迹执行,然后进行轨迹管理。在这种方法中,需要概率测量模型,融合在来自不同传感器的测量更新期间隐式进行。
相比之下,最近的深度学习方法专注于单次融合,通常不包含显式的概率测量模型。当前研究和开发的主要重点是相机-LiDAR融合,而相机-雷达融合只起次要作用,这可能是由于缺乏具有最先进雷达数据的大型公共数据集。
2D目标检测
两类主要的仅图像算法可以识别:两阶段和单阶段方法。在两阶段方法中,如R-CNN及其改进,使用区域提议网络来识别图像中的感兴趣区域(ROI),然后在后续分类网络中对其进行分类。这些网络通常计算密集且无法端到端训练,因此开发了单阶段网络,例如SSD或RetinaNet。这些网络使用不同大小和纵横比的预定义锚框,而不是依赖于数据的ROI。
最近开发的融合方法重新使用所描述的网络架构,并采用雷达数据来增强其检测性能。在顺序融合中,雷达检测被投影到图像平面以在两阶段目标检测框架中创建ROI。替代的深度融合方法使用投影的雷达目标生成额外的图像通道,这些通道被馈送到修改的单阶段目标检测网络。从雷达距离和横向和纵向相对速度生成三个额外通道。使用两个输出分支分别检测小型和大型障碍物。
BEV和3D目标检测
仅图像算法的两个主要组可以识别:两阶段和单阶段方法。如R-CNN及其改进的两阶段方法使用区域提议网络来识别图像中的感兴趣区域,然后在后续分类网络中对其进行分类。最近开发的融合方法重新使用所描述的网络架构并采用雷达数据来增强其检测性能。已经提出了使用雷达距离-方位角图像与相机图像的融合网络,这些图像被反向投影到雷达平面上,在CNN的单独特征分支中。生成的特征然后被融合并馈送到SSD检测头。
未来研究方向
我们已经确定了几个具有实际重要性的研究方向,并希望强调改进的潜力:干扰抑制和避免、高分辨率和大FOV角度估计、存在多径时的参数估计以及目标分类和深度学习。
干扰抑制和避免
在最近的干扰抑制概述文章中,作者提出"干扰真的是一个问题吗?"我们认为,全面的答案对于汽车行业权衡高级干扰抑制的成本和收益以及指导监管举措至关重要。为此,需要进行大规模研究,对ADAS和HAD要求进行细粒度的观察,并仔细选择相关场景。这包括开发适当的干扰模拟模型,以预测不断增加的未来雷达部署的影响。
即使还没有彻底的定量答案,干扰抑制研究在汽车行业和研究界都被认为是高度相关的。今天,最常见的干扰场景是干扰源和受害者都使用FMCW型调制方案。在这种情况下,我们认为干扰抑制的参数化方法特别相关。这包括研究适当的基带干扰模型、相应的模型参数估计技术以及干扰去除的最优方法。
高分辨率和大FOV角度估计
为给定数量的接收和发射通道设计MIMO阵列时的挑战是权衡角度分辨率和无模糊FOV。对于URA,分辨率和无模糊FOV由水平和垂直天线间距控制。稀疏阵列,特别是具有缺失元素的URA,通常提供更多的控制选项。稀疏阵列设计允许在分辨率和模糊性之间进行灵活权衡,同时考虑诸如对生产公差的鲁棒性、可行的波束形成网格大小和可接受的旁瓣电平等约束,这对汽车雷达具有很高的实际相关性。另一个挑战是在车辆集成后和传感器寿命期间保持准确的阵列校准。因此,在线阵列校准技术的研究在汽车行业也具有重要意义。
存在多径时的参数估计
在许多城市和高速公路场景中,多径传播的发生非常可能,例如通过护栏、停放的汽车、卡车拖车和墙壁的水平多径,或通过路面的垂直多径。汽车雷达传感器也必须在这些情况下可靠运行,以避免错误的目标定位或对鬼影目标的不正确处理。存在多径时的目标角度估计已被提出,但是,在汽车雷达信号处理框架中的全面集成是一个开放的话题。这包括考虑距离和相对径向速度维度中的多径模型,以补充解耦参数估计。
此外,需要重新考虑预处理方案,因为由于违反了虚拟阵列假设,传统波束形成不会沿着角度雷达立方体维度集中目标能量。这对于具有大量接收和发射通道的高性能汽车雷达特别相关,这使得在波束形成之前进行模型拟合在计算上不切实际。适应的预处理的一个例子是具有独立DOD和DOA网格的4D波束形成,它也为多径情况集中目标能量。
目标分类和深度学习
如前所述,今天在深度学习应用领域的研究活动主要是使用专有数据集进行的。不幸的是,缺少广泛使用的具有最先进雷达数据的大型公共数据集。我们认为,理想的数据集应该以雷达为中心,即3D标注应主要考虑雷达检测,以便可以利用和展示雷达在更远距离或恶劣天气条件下的优势。此外,应考虑半自动标记技术和适当的参考传感器系统,包括高性能LiDAR传感器和带有长焦镜头的几个相机。
基于对当前雷达信号模拟成熟度的评估,一个有趣的替代或补充可能是具有合成雷达数据的数据集。非常需要一项研究来回答合成雷达数据是否可以用于训练和测试目标检测和分类网络的问题。总之,我们注意到这种数据集(无论是真实的还是合成的)的可用性将刺激仅雷达或雷达-相机融合技术的研究和开发,用于BEV或3D目标检测。
附录:详细数学推导
A. FMCW信号的详细推导
考虑FMCW雷达的发射信号:
stx(t)=Atexp(jϕtx(t))s_{tx}(t) = A_t \exp(j\phi_{tx}(t))stx(t)=Atexp(jϕtx(t))
其中相位函数为:
ϕtx(t)=2π∫0tfinst(τ)dτ=2π(f0t+αt22)\phi_{tx}(t) = 2\pi \int_0^t f_{inst}(\tau)d\tau = 2\pi \left(f_0 t + \frac{\alpha t^2}{2}\right)ϕtx(t)=2π∫0tfinst(τ)dτ=2π(f0t+2αt2)
瞬时频率为:
finst(t)=12πdϕtx(t)dt=f0+αtf_{inst}(t) = \frac{1}{2\pi}\frac{d\phi_{tx}(t)}{dt} = f_0 + \alpha tfinst(t)=2π1dtdϕtx(t)=f0+αt
对于位于距离RRR的目标,接收信号延迟τ=2R/c\tau = 2R/cτ=2R/c:
srx(t)=Arexp(jϕtx(t−τ))s_{rx}(t) = A_r \exp(j\phi_{tx}(t-\tau))srx(t)=Arexp(jϕtx(t−τ))
混频器输出(忽略高频项):
sIF(t)=stx∗(t)⋅srx(t)=Arexp(j[ϕtx(t−τ)−ϕtx(t)])s_{IF}(t) = s_{tx}^*(t) \cdot s_{rx}(t) = A_r \exp(j[\phi_{tx}(t-\tau) - \phi_{tx}(t)])sIF(t)=stx∗(t)⋅srx(t)=Arexp(j[ϕtx(t−τ)−ϕtx(t)])
展开相位差:
ϕtx(t−τ)−ϕtx(t)=2π[f0(t−τ)+α(t−τ)22−f0t−αt22]\phi_{tx}(t-\tau) - \phi_{tx}(t) = 2\pi\left[f_0(t-\tau) + \frac{\alpha(t-\tau)^2}{2} - f_0t - \frac{\alpha t^2}{2}\right]ϕtx(t−τ)−ϕtx(t)=2π[f0(t−τ)+2α(t−τ)2−f0t−2αt2]
=2π[−f0τ+α2(t2−2tτ+τ2−t2)]= 2\pi\left[-f_0\tau + \frac{\alpha}{2}(t^2 - 2t\tau + \tau^2 - t^2)\right]=2π[−f0τ+2α(t2−2tτ+τ2−t2)]
=2π[−f0τ−αtτ+ατ22]= 2\pi\left[-f_0\tau - \alpha t\tau + \frac{\alpha\tau^2}{2}\right]=2π[−f0τ−αtτ+2ατ2]
对于典型的汽车雷达参数,τ2\tau^2τ2项可以忽略,因此:
sIF(t)≈Arexp(j2π[−f0τ−αtτ])s_{IF}(t) \approx A_r \exp\left(j2\pi\left[-f_0\tau - \alpha t\tau\right]\right)sIF(t)≈Arexp(j2π[−f0τ−αtτ])
中频频率为:
fIF=ατ=2αRcf_{IF} = \alpha\tau = \frac{2\alpha R}{c}fIF=ατ=c2αR
B. 多普勒效应的详细分析
对于相对速度为vvv的移动目标,延迟随时间变化:
τ(t)=2(R0+vt)c\tau(t) = \frac{2(R_0 + vt)}{c}τ(t)=c2(R0+vt)
其中R0R_0R0是初始距离。代入中频信号表达式:
sIF(t)=Arexp(j2π[−f0τ(t)−αtτ(t)])s_{IF}(t) = A_r \exp\left(j2\pi\left[-f_0\tau(t) - \alpha t\tau(t)\right]\right)sIF(t)=Arexp(j2π[−f0τ(t)−αtτ(t)])
=Arexp(j2π[−2f0(R0+vt)c−2αt(R0+vt)c])= A_r \exp\left(j2\pi\left[-\frac{2f_0(R_0 + vt)}{c} - \frac{2\alpha t(R_0 + vt)}{c}\right]\right)=Arexp(j2π[−c2f0(R0+vt)−c2αt(R0+vt)])
=Arexp(j2π[−2f0R0c−2f0vtc−2αtR0c−2αvt2c])= A_r \exp\left(j2\pi\left[-\frac{2f_0R_0}{c} - \frac{2f_0vt}{c} - \frac{2\alpha tR_0}{c} - \frac{2\alpha vt^2}{c}\right]\right)=Arexp(j2π[−c2f0R0−c2f0vt−c2αtR0−c2αvt2])
瞬时频率为:
finst(t)=12πdϕdt=2f0vc+2αR0c+4αvtcf_{inst}(t) = \frac{1}{2\pi}\frac{d\phi}{dt} = \frac{2f_0v}{c} + \frac{2\alpha R_0}{c} + \frac{4\alpha vt}{c}finst(t)=2π1dtdϕ=c2f0v+c2αR0+c4αvt
第一项是多普勒频移,第二项是距离对应的频率,第三项是距离-多普勒耦合项。
C. MIMO虚拟阵列的形成
考虑NNN个接收天线和QQQ个发射天线的MIMO系统。接收天线位置为rn\mathbf{r}_nrn,发射天线位置为tq\mathbf{t}_qtq。
对于远场目标,从方向k\mathbf{k}k入射的平面波,接收天线nnn的相位为:
ϕrx,n=k⋅rn\phi_{rx,n} = \mathbf{k} \cdot \mathbf{r}_nϕrx,n=k⋅rn
发射天线qqq的相位为:
ϕtx,q=k⋅tq\phi_{tx,q} = \mathbf{k} \cdot \mathbf{t}_qϕtx,q=k⋅tq
总相位为:
ϕtotal=ϕtx,q+ϕrx,n=k⋅(tq+rn)\phi_{total} = \phi_{tx,q} + \phi_{rx,n} = \mathbf{k} \cdot (\mathbf{t}_q + \mathbf{r}_n)ϕtotal=ϕtx,q+ϕrx,n=k⋅(tq+rn)
定义虚拟阵列位置:
vnq=rn+tq\mathbf{v}_{nq} = \mathbf{r}_n + \mathbf{t}_qvnq=rn+tq
这形成了N×QN \times QN×Q个虚拟阵列元素。
D. 4D FFT处理的数学基础
4D雷达立方体通过4D FFT获得:
X(λ,μ,ν,ξ)=∑l=0L−1∑m=0M−1∑n=0N−1∑q=0Q−1x(l,m,n,q)⋅e−j(λl+μm+νn+ξq)X(\lambda, \mu, \nu, \xi) = \sum_{l=0}^{L-1} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{q=0}^{Q-1} x(l,m,n,q) \cdot e^{-j(\lambda l + \mu m + \nu n + \xi q)}X(λ,μ,ν,ξ)=l=0∑L−1m=0∑M−1n=0∑N−1q=0∑Q−1x(l,m,n,q)⋅e−j(λl+μm+νn+ξq)
其中:
- λ=2πkr/L\lambda = 2\pi k_r/Lλ=2πkr/L,kr=0,1,...,L−1k_r = 0,1,...,L-1kr=0,1,...,L−1(距离频率)
- μ=2πkv/M\mu = 2\pi k_v/Mμ=2πkv/M,kv=0,1,...,M−1k_v = 0,1,...,M-1kv=0,1,...,M−1(速度频率)
- ν=2πkϕ/N\nu = 2\pi k_\phi/Nν=2πkϕ/N,kϕ=0,1,...,N−1k_\phi = 0,1,...,N-1kϕ=0,1,...,N−1(方位频率)
- ξ=2πkθ/Q\xi = 2\pi k_\theta/Qξ=2πkθ/Q,kθ=0,1,...,Q−1k_\theta = 0,1,...,Q-1kθ=0,1,...,Q−1(仰角频率)
目标参数通过频率估计获得:
r^k=cλ^k4παTS\hat{r}_k = \frac{c\hat{\lambda}_k}{4\pi\alpha T_S}r^k=4παTScλ^k
v^k=cμ^k4πfTP\hat{v}_k = \frac{c\hat{\mu}_k}{4\pi f T_P}v^k=4πfTPcμ^k
ϕ^k=arcsin(cν^k2πfdycos(θ^k))\hat{\phi}_k = \arcsin\left(\frac{c\hat{\nu}_k}{2\pi f d_y \cos(\hat{\theta}_k)}\right)ϕ^k=arcsin(2πfdycos(θ^k)cν^k)
θ^k=arcsin(cξ^k2πfdz)\hat{\theta}_k = \arcsin\left(\frac{c\hat{\xi}_k}{2\pi f d_z}\right)θ^k=arcsin(2πfdzcξ^k)
E. CFAR检测的数学原理
CA-CFAR(单元平均CFAR)的检测统计量为:
T=∣X∣2P^nT = \frac{|X|^2}{\hat{P}_n}T=P^n∣X∣2
其中P^n\hat{P}_nP^n是噪声功率估计:
P^n=1Nref∑i∈R∣Xi∣2\hat{P}_n = \frac{1}{N_{ref}} \sum_{i \in \mathcal{R}} |X_i|^2P^n=Nref1i∈R∑∣Xi∣2
R\mathcal{R}R是参考单元集合,NrefN_{ref}Nref是参考单元数。
检测门限为:
γ=αCFAR⋅(Nref+1−(Nref+1)1/(Nref+1))\gamma = \alpha_{CFAR} \cdot (N_{ref} + 1 - (N_{ref} + 1)^{1/(N_{ref}+1)})γ=αCFAR⋅(Nref+1−(Nref+1)1/(Nref+1))
其中αCFAR\alpha_{CFAR}αCFAR由所需的虚警概率PFAP_{FA}PFA决定:
PFA=(1+γ)−NrefP_{FA} = (1 + \gamma)^{-N_{ref}}PFA=(1+γ)−Nref
F. 多径传播模型
考虑直接路径和一条多径的情况。接收信号为:
srx(t)=A1ejϕ1(t)+A2ejϕ2(t)s_{rx}(t) = A_1 e^{j\phi_1(t)} + A_2 e^{j\phi_2(t)}srx(t)=A1ejϕ1(t)+A2ejϕ2(t)
其中:
- ϕ1(t)=2πf(t−τ1)+πα(t−τ1)2\phi_1(t) = 2\pi f(t - \tau_1) + \pi\alpha(t - \tau_1)^2ϕ1(t)=2πf(t−τ1)+πα(t−τ1)2(直接路径)
- ϕ2(t)=2πf(t−τ2)+πα(t−τ2)2\phi_2(t) = 2\pi f(t - \tau_2) + \pi\alpha(t - \tau_2)^2ϕ2(t)=2πf(t−τ2)+πα(t−τ2)2(多径)
混频后的信号包含多个频率分量:
sIF(t)=A1ej2πfIF,1t+A2ej2πfIF,2ts_{IF}(t) = A_1 e^{j2\pi f_{IF,1}t} + A_2 e^{j2\pi f_{IF,2}t}sIF(t)=A1ej2πfIF,1t+A2ej2πfIF,2t
其中fIF,1=ατ1f_{IF,1} = \alpha\tau_1fIF,1=ατ1,fIF,2=ατ2f_{IF,2} = \alpha\tau_2fIF,2=ατ2。
在角度域,多径导致虚拟目标:
θvirtual=arcsin(sin(θtrue)+λΔτd⋅τtrue)\theta_{virtual} = \arcsin\left(\sin(\theta_{true}) + \frac{\lambda\Delta\tau}{d \cdot \tau_{true}}\right)θvirtual=arcsin(sin(θtrue)+d⋅τtrueλΔτ)
其中Δτ=τ2−τ1\Delta\tau = \tau_2 - \tau_1Δτ=τ2−τ1是路径差。
G. 窗函数的影响分析
使用窗函数w(n)w(n)w(n)后,频谱变为原始频谱与窗函数频谱的卷积:
Xw(f)=X(f)∗W(f)X_w(f) = X(f) * W(f)Xw(f)=X(f)∗W(f)
其中W(f)W(f)W(f)是窗函数的傅里叶变换。
对于汉宁窗:
w(n)=0.5−0.5cos(2πnN−1)w(n) = 0.5 - 0.5\cos\left(\frac{2\pi n}{N-1}\right)w(n)=0.5−0.5cos(N−12πn)
其频谱为:
W(f)=0.5DN(f)−0.25DN(f−1/N)−0.25DN(f+1/N)W(f) = 0.5D_N(f) - 0.25D_N(f - 1/N) - 0.25D_N(f + 1/N)W(f)=0.5DN(f)−0.25DN(f−1/N)−0.25DN(f+1/N)
其中DN(f)D_N(f)DN(f)是Dirichlet核:
DN(f)=sin(πNf)sin(πf)D_N(f) = \frac{\sin(\pi Nf)}{\sin(\pi f)}DN(f)=sin(πf)sin(πNf)
主瓣宽度增加约50%,但旁瓣降低约30dB。
H. 参数估计的克拉美-罗下界
对于参数向量θ=[r,v,ϕ,θ]T\boldsymbol{\theta} = [r, v, \phi, \theta]^Tθ=[r,v,ϕ,θ]T的无偏估计,克拉美-罗下界(CRLB)由Fisher信息矩阵的逆给出:
CRLB(θ)=F−1\text{CRLB}(\boldsymbol{\theta}) = \mathbf{F}^{-1}CRLB(θ)=F−1
Fisher信息矩阵的元素为:
Fij=2σn2Re{∂sH∂θi∂s∂θj}F_{ij} = \frac{2}{\sigma_n^2} \text{Re}\left\{\frac{\partial \mathbf{s}^H}{\partial \theta_i} \frac{\partial \mathbf{s}}{\partial \theta_j}\right\}Fij=σn22Re{∂θi∂sH∂θj∂s}
其中s\mathbf{s}s是信号向量,σn2\sigma_n^2σn2是噪声方差。
对于距离估计:
var(r^)≥c2(2π)2⋅4B2⋅SNR\text{var}(\hat{r}) \geq \frac{c^2}{(2\pi)^2 \cdot 4B^2 \cdot \text{SNR}}var(r^)≥(2π)2⋅4B2⋅SNRc2
对于速度估计:
var(v^)≥c2(2πf0)2⋅4Tobs2⋅SNR\text{var}(\hat{v}) \geq \frac{c^2}{(2\pi f_0)^2 \cdot 4T_{obs}^2 \cdot \text{SNR}}var(v^)≥(2πf0)2⋅4Tobs2⋅SNRc2