汽车应用FMCW雷达基带信号处理系统设计
Lin, JJ., Li, YP., Hsu, WC. et al. Design of an FMCW radar baseband signal processing system for automotive application. SpringerPlus 5, 42 (2016). https://doi.org/10.1186/s40064-015-1583-5
引言与背景
近年来,汽车雷达系统已在自适应巡航控制、碰撞缓解和预碰撞感知等各种主动安全应用中得到广泛部署。调频连续波(FMCW)技术以其高分辨率测量能力著称,在汽车雷达和仪器测量领域应用广泛。与脉冲雷达相比,FMCW雷达具有测量时间短、峰均功率比低的优势。在汽车安全应用中,需要同时测量并在短时间内更新各个目标的距离和速度信息。
FMCW汽车雷达的基本思想是从由传播延迟和多普勒频率组成的差拍频率中获取距离和速度信息。然而在多目标检测中,典型的FMCW雷达会遭遇距离-速度模糊问题,导致虚假目标和目标丢失。本研究提出了一种创新的三段式波形设计,不仅解决了距离-速度模糊问题,还满足了短测量和处理时间约束,同时不增加射频前端负载。
FMCW雷达系统架构与信号模型
系统架构
图1描述:FMCW系统框图展示了完整的信号处理链路。系统包含FMCW波形发生器产生调制信号,通过发射天线辐射出去。信号遇到目标后反射回来,由接收天线捕获。接收信号与发射信号在混频器中相乘,经过低通滤波器去除高频分量,然后通过模数转换器(A/D)数字化,最终送入基带信号处理单元进行分析。
详细信号模型推导
FMCW雷达发射线性调频信号,其瞬时频率随时间线性变化。发射信号的数学表达式为:
s T ( t ) = A T cos ( 2 π f c t + 2 π ∫ 0 t f T ( τ ) d τ ) s_T(t) = A_T \cos\left(2\pi f_c t + 2\pi \int_0^t f_T(\tau)d\tau\right) sT(t)=ATcos(2πfct+2π∫0tfT(τ)dτ)
其中发射频率的时间函数为:
f
T
(
τ
)
=
B
T
⋅
τ
f_T(\tau) = \frac{B}{T} \cdot \tau
fT(τ)=TB⋅τ
这表示频率从初始值开始,以 B / T B/T B/T 的斜率线性增加,其中 B B B 是扫频带宽, T T T 是扫频时间。
目标反射信号经历了传播延迟和多普勒效应。时延为:
t
d
=
2
(
R
0
+
v
t
)
c
t_d = \frac{2(R_0 + vt)}{c}
td=c2(R0+vt)
多普勒频移为:
f
D
=
−
2
f
c
v
c
f_D = -\frac{2f_c v}{c}
fD=−c2fcv
接收频率因此变为:
f
R
(
t
)
=
B
T
(
t
−
t
d
)
+
f
D
f_R(t) = \frac{B}{T}(t - t_d) + f_D
fR(t)=TB(t−td)+fD
接收信号的完整表达式:
s
R
(
t
)
=
A
R
cos
[
2
π
f
c
(
t
−
t
d
)
+
2
π
∫
0
t
−
t
d
f
T
(
τ
)
d
τ
+
2
π
f
D
t
]
s_R(t) = A_R \cos\left[2\pi f_c(t - t_d) + 2\pi \int_0^{t-t_d} f_T(\tau)d\tau + 2\pi f_D t\right]
sR(t)=ARcos[2πfc(t−td)+2π∫0t−tdfT(τ)dτ+2πfDt]
展开积分并整理后得到:
s
R
(
t
)
=
A
R
cos
[
2
π
(
f
c
(
t
−
t
d
)
+
B
T
(
1
2
t
2
−
t
d
⋅
t
)
+
f
D
⋅
t
)
]
s_R(t) = A_R \cos\left[2\pi\left(f_c(t - t_d) + \frac{B}{T}\left(\frac{1}{2}t^2 - t_d \cdot t\right) + f_D \cdot t\right)\right]
sR(t)=ARcos[2π(fc(t−td)+TB(21t2−td⋅t)+fD⋅t)]
差拍频率的产生
图2描述:三角波形FMCW雷达系统的频率-时间图。图中蓝色实线表示发射信号频率,红色虚线表示接收信号频率。接收信号相对发射信号有时延 t d t_d td,在上升段产生正的差拍频率 f b u f_{bu} fbu,在下降段产生负的差拍频率 f b d f_{bd} fbd。频率差的大小包含了目标的距离和速度信息。
混频后的中频信号经低通滤波,上斜坡段得到:
S
I
F
,
u
p
(
t
)
=
A
T
A
R
2
cos
[
2
π
(
f
c
⋅
2
R
0
c
+
(
2
R
0
c
⋅
B
T
+
2
f
c
v
c
)
t
)
]
S_{IF,up}(t) = \frac{A_T A_R}{2}\cos\left[2\pi\left(f_c \cdot \frac{2R_0}{c} + \left(\frac{2R_0}{c} \cdot \frac{B}{T} + \frac{2f_c v}{c}\right)t\right)\right]
SIF,up(t)=2ATARcos[2π(fc⋅c2R0+(c2R0⋅TB+c2fcv)t)]
下斜坡段得到:
S
I
F
,
d
o
w
n
(
t
)
=
A
T
A
R
2
cos
[
2
π
(
f
c
⋅
2
R
0
c
+
(
−
2
R
0
c
⋅
B
T
+
2
f
c
v
c
)
t
)
]
S_{IF,down}(t) = \frac{A_T A_R}{2}\cos\left[2\pi\left(f_c \cdot \frac{2R_0}{c} + \left(-\frac{2R_0}{c} \cdot \frac{B}{T} + \frac{2f_c v}{c}\right)t\right)\right]
SIF,down(t)=2ATARcos[2π(fc⋅c2R0+(−c2R0⋅TB+c2fcv)t)]
从中提取的差拍频率为:
- 上斜坡: f b u = 2 R 0 B c T + 2 f c v c f_{bu} = \frac{2R_0 B}{cT} + \frac{2f_c v}{c} fbu=cT2R0B+c2fcv
- 下斜坡: f b d = − 2 R 0 B c T + 2 f c v c f_{bd} = -\frac{2R_0 B}{cT} + \frac{2f_c v}{c} fbd=−cT2R0B+c2fcv
通过求解这个方程组,可以得到:
- 距离: R 0 = c T ( f b u − f b d ) 4 B R_0 = \frac{cT(f_{bu} - f_{bd})}{4B} R0=4BcT(fbu−fbd)
- 速度: v = c ( f b u + f b d ) 4 f c v = \frac{c(f_{bu} + f_{bd})}{4f_c} v=4fcc(fbu+fbd)
创新的三段式波形设计
波形结构
图3描述:三段式波形的频率-时间图展示了创新的调制方案。第一段(Segment 1)是持续时间为 T 1 T_1 T1 的上斜坡,频率从基准值线性增加到最大值 B B B。第二段(Segment 2)是同样持续时间 T 1 T_1 T1 的下斜坡,频率从最大值线性降回基准值。第三段(Segment 3)是持续时间为 T 2 T_2 T2 的检查斜坡,具有不同的斜率 B / T 2 B/T_2 B/T2,用于验证配对的正确性。
系统参数设计
根据所需的距离分辨率 Δ R \Delta R ΔR 和速度分辨率 Δ v \Delta v Δv,系统参数按以下关系确定:
带宽决定距离分辨率:
B
=
c
2
Δ
R
B = \frac{c}{2\Delta R}
B=2ΔRc
观测时间决定速度分辨率:
T
=
c
2
f
c
Δ
v
T = \frac{c}{2f_c \Delta v}
T=2fcΔvc
采样频率需满足奈奎斯特定理:
f
s
≥
2
B
R
m
a
x
c
T
+
2
f
c
v
m
a
x
c
f_s \geq \frac{2BR_{max}}{cT} + \frac{2f_c v_{max}}{c}
fs≥cT2BRmax+c2fcvmax
表1和表2详细列出了长程和短程汽车雷达的系统规格及相应的三段式波形参数。长程雷达最大探测距离200米,分辨率1米;短程雷达最大探测距离50米,分辨率0.1米。
配对验证机制
三段式波形的核心创新在于使用第三段进行配对验证。对于第 k k k 个目标,三段的差拍频率分别为:
f b u , k = 2 R 0 , k B c T 1 + 2 f c v k c f_{bu,k} = \frac{2R_{0,k} B}{cT_1} + \frac{2f_c v_k}{c} fbu,k=cT12R0,kB+c2fcvk
f b d , k = − 2 R 0 , k B c T 1 + 2 f c v k c f_{bd,k} = -\frac{2R_{0,k} B}{cT_1} + \frac{2f_c v_k}{c} fbd,k=−cT12R0,kB+c2fcvk
f b c , k = 2 R 0 , k B c T 2 + 2 f c v k c f_{bc,k} = \frac{2R_{0,k} B}{cT_2} + \frac{2f_c v_k}{c} fbc,k=cT22R0,kB+c2fcvk
当配对第 i i i 个上斜坡频率与第 j j j 个下斜坡频率时,计算暂定的距离和速度:
R 0 , t e , i j = c T 1 ( f b u , i − f b d , j ) 4 B R_{0,te,ij} = \frac{cT_1(f_{bu,i} - f_{bd,j})}{4B} R0,te,ij=4BcT1(fbu,i−fbd,j)
v t e , i j = c ( f b d , i + f b u , j ) 4 f c v_{te,ij} = \frac{c(f_{bd,i} + f_{bu,j})}{4f_c} vte,ij=4fcc(fbd,i+fbu,j)
将这些暂定值代入第三段方程,得到预期的检查频率:
f ^ b c , i j = 2 B R 0 , t e , i j c T 2 + 2 f c v t e , i j c \hat{f}_{bc,ij} = \frac{2BR_{0,te,ij}}{cT_2} + \frac{2f_c v_{te,ij}}{c} f^bc,ij=cT22BR0,te,ij+c2fcvte,ij
如果 ∣ f ^ b c , i j − f b c , k ∣ < ε f |\hat{f}_{bc,ij} - f_{bc,k}| < \varepsilon_f ∣f^bc,ij−fbc,k∣<εf,则配对正确,对应真实目标;否则为虚假配对。
多目标检测架构详解
整体架构
图4描述:多目标检测架构流程图展示了完整的信号处理链。顶部显示三段波形的频谱,每段经过独立的信号处理通道(ADC采样、加窗、FFT、OS-CFAR)提取差拍频率。中间的配对模块将上下斜坡的频率进行智能配对,底部的验证模块使用第三段频率确认配对的正确性,最终输出准确的距离、速度和角度信息。
检测过程详细步骤
- 窗函数处理:接收信号首先乘以窗函数(如汉明窗),减少频谱泄漏
- FFT变换:将时域信号变换到频域,获得频谱分布
- OS-CFAR检测:采用顺序统计CFAR算法,在杂波环境中自适应设置检测门限
- 峰值提取:识别超过门限的频谱峰值,对应各目标的差拍频率
- 角度估计:基于多天线接收信号的相位差,估计目标方位角
配对算法优化
传统方法需要对所有上下斜坡频率进行全排列配对,计算复杂度为 O ( n 2 ) O(n^2) O(n2)。本研究通过角度信息预筛选,只配对角度差小于阈值的频率对:
∣ θ u , i − θ d , j ∣ < ε θ |\theta_{u,i} - \theta_{d,j}| < \varepsilon_\theta ∣θu,i−θd,j∣<εθ
这将配对复杂度降低到 O ( n log n ) O(n\log n) O(nlogn) 级别。
空间滤波与角度估计
天线阵列模型
图5描述:多目标角度估计流程图展示了创新的两级处理架构。顶部三个天线接收信号,经过频谱分析得到各自的频谱响应 r 1 r_1 r1、 r 2 r_2 r2、 r 3 r_3 r3。首先使用最大似然(ML)角度估计器进行初步估计,然后通过空间滤波器判断是否存在角度重叠。对于重叠情况,启用计算复杂度更高但分辨率更好的最小范数方法;对于无重叠情况,直接输出ML估计结果。
考虑均匀线阵,天线间距为 d R d_R dR,入射角为 ϕ \phi ϕ 的信号导向矢量为:
a ( ϕ ) = [ 1 e j 2 π λ d R sin ( ϕ ) e j 2 π λ 2 d R sin ( ϕ ) ⋯ e j 2 π λ ( N − 1 ) d R sin ( ϕ ) ] T \mathbf{a}(\phi) = \left[1 \quad e^{j\frac{2\pi}{\lambda}d_R\sin(\phi)} \quad e^{j\frac{2\pi}{\lambda}2d_R\sin(\phi)} \quad \cdots \quad e^{j\frac{2\pi}{\lambda}(N-1)d_R\sin(\phi)}\right]^T a(ϕ)=[1ejλ2πdRsin(ϕ)ejλ2π2dRsin(ϕ)⋯ejλ2π(N−1)dRsin(ϕ)]T
空间滤波器设计
空间滤波器的传递函数设计为具有两个零点的多项式:
H ( z ) = c ( z − z 1 ) ( z − z 2 ) H(z) = c(z - z_1)(z - z_2) H(z)=c(z−z1)(z−z2)
其中 z = e j 2 π λ d R sin ( ϕ ) z = e^{j\frac{2\pi}{\lambda}d_R\sin(\phi)} z=ejλ2πdRsin(ϕ), z 1 z_1 z1 和 z 2 z_2 z2 对应需要抑制的方向。
展开后得到权重矢量:
w
d
=
c
[
1
−
(
z
1
+
z
2
)
z
1
z
2
]
T
\mathbf{w}_d = c\left[1 \quad -(z_1 + z_2) \quad z_1 z_2\right]^T
wd=c[1−(z1+z2)z1z2]T
当两个目标角度接近时( ϕ \phi ϕ 和 ϕ + δ \phi+\delta ϕ+δ),滤波器输出接近零,触发最小范数方法进行精细分辨。
最小范数方法
对于重叠目标,构造信号子空间和噪声子空间,最小范数谱估计为:
P M N ( ϕ ) = 1 ∣ a H ( ϕ ) E N E N H a ( ϕ ) ∣ P_{MN}(\phi) = \frac{1}{|\mathbf{a}^H(\phi)\mathbf{E}_N\mathbf{E}_N^H\mathbf{a}(\phi)|} PMN(ϕ)=∣aH(ϕ)ENENHa(ϕ)∣1
其中 E N \mathbf{E}_N EN 是噪声子空间的特征向量矩阵。
仿真与实验结果分析
天线方向图特性
图6描述:(a) 短程雷达天线方向图呈现宽波束特性,3dB波束宽度约90度,适合近距离大范围监测。红色曲线显示主瓣增益约20dB,旁瓣抑制优于-10dB。(b) 长程雷达天线方向图呈现窄波束特性,3dB波束宽度约16度,主瓣增益达30dB,适合远距离精确探测。
多目标检测结果
图7描述:短程雷达检测结果的二维散点图,横轴为方位角(-15°到+15°),纵轴为距离(0-50米)。图中清晰显示了6个检测到的目标(红色方框标记),右侧表格列出每个目标的精确测量值:距离误差小于0.1米,速度误差小于0.1米/秒,角度误差小于1度。
图8描述:长程雷达检测结果展示了150米范围内的目标分布。5个目标分布在不同距离和角度,测量精度同样优异。特别注意目标3和4距离相近但角度不同,系统成功分辨。
统计性能分析
图9描述:检测概率随目标数量变化曲线。蓝色圆圈线表示使用最小范数方法,在9个目标时仍保持90%以上检测概率;红色叉号线表示不使用最小范数方法,性能在目标数超过5个后急剧下降。这证明了最小范数方法在密集目标场景下的优势。
图10描述:RMSE性能曲线采用对数坐标展示。蓝色方形为距离RMSE,从单目标的0.03米增加到9目标的0.1米;红色圆形为速度RMSE,从0.02米/秒增加到0.08米/秒;黑色菱形为角度RMSE,从0.5度增加到1度。所有指标都在可接受范围内。
图11描述:空间滤波阈值 ε S \varepsilon_S εS 对检测概率的影响。四条曲线对应不同阈值(0.01、0.001、0.0001、0.00001),较小阈值提供更高检测概率但增加计算负担。选择0.0001作为折中方案。
实地测量验证
图12描述:实验装置照片展示了三层结构:顶层是24GHz雷达模块,包含发射和接收天线阵列;中层是ADC和微控制器(MCU)板,负责信号采样和控制;底层是DSP评估板,运行基带信号处理算法。
图13描述:实地测量场景和结果。右侧照片显示了国立交通大学校园内的测试场地,三个目标(用红圈标记)分别位于20米、30米和40米处。左侧散点图显示了检测结果与真实位置的对比,测量误差在系统规格范围内。
结论
本研究成功开发了一种创新的FMCW雷达基带信号处理系统,通过三段式波形设计和优化的检测算法,在不增加射频前端复杂度的前提下,实现了高精度多目标检测。系统测量时间仅24毫秒,比传统方法缩短50%以上。实验证明,该系统能够可靠检测多个目标,距离精度优于1米,速度精度优于3.2公里/小时,角度精度优于1度,完全满足汽车雷达应用需求。
附录:数学推导
A. 混频过程
发射信号和接收信号在混频器中相乘:
s m i x ( t ) = s T ( t ) ⋅ s R ( t ) s_{mix}(t) = s_T(t) \cdot s_R(t) smix(t)=sT(t)⋅sR(t)
利用三角恒等式 cos A ⋅ cos B = 1 2 [ cos ( A − B ) + cos ( A + B ) ] \cos A \cdot \cos B = \frac{1}{2}[\cos(A-B) + \cos(A+B)] cosA⋅cosB=21[cos(A−B)+cos(A+B)]:
s m i x ( t ) = A T A R 2 [ cos ( Φ − ( t ) ) + cos ( Φ + ( t ) ) ] s_{mix}(t) = \frac{A_T A_R}{2}\left[\cos(\Phi_-(t)) + \cos(\Phi_+(t))\right] smix(t)=2ATAR[cos(Φ−(t))+cos(Φ+(t))]
其中:
Φ
−
(
t
)
=
2
π
[
f
c
t
d
−
B
T
t
d
t
+
B
2
T
t
d
2
−
f
D
t
]
\Phi_-(t) = 2\pi\left[f_c t_d - \frac{B}{T}t_d t + \frac{B}{2T}t_d^2 - f_D t\right]
Φ−(t)=2π[fctd−TBtdt+2TBtd2−fDt]
Φ + ( t ) = 2 π [ 2 f c t − f c t d + B T t 2 − B T t d t − B 2 T t d 2 + f D t ] \Phi_+(t) = 2\pi\left[2f_c t - f_c t_d + \frac{B}{T}t^2 - \frac{B}{T}t_d t - \frac{B}{2T}t_d^2 + f_D t\right] Φ+(t)=2π[2fct−fctd+TBt2−TBtdt−2TBtd2+fDt]
低通滤波器滤除高频分量 Φ + ( t ) \Phi_+(t) Φ+(t),保留低频分量 Φ − ( t ) \Phi_-(t) Φ−(t)。
忽略 t d 2 t_d^2 td2 项(因为 t d ≪ t t_d \ll t td≪t),得到中频信号:
s I F ( t ) = A T A R 2 cos [ 2 π ( f c ⋅ 2 R 0 c + ( 2 R 0 B c T + 2 f c v c ) t ) ] s_{IF}(t) = \frac{A_T A_R}{2}\cos\left[2\pi\left(f_c \cdot \frac{2R_0}{c} + \left(\frac{2R_0 B}{cT} + \frac{2f_c v}{c}\right)t\right)\right] sIF(t)=2ATARcos[2π(fc⋅c2R0+(cT2R0B+c2fcv)t)]
B. 距离-速度解耦的矩阵形式
对于 N N N 个目标,差拍频率可以写成矩阵形式:
[ f b u , 1 f b u , 2 ⋮ f b u , N ] = [ 2 B c T 1 2 f c c 2 B c T 1 2 f c c ⋮ ⋮ 2 B c T 1 2 f c c ] [ R 0 , 1 v 1 R 0 , 2 v 2 ⋮ R 0 , N v N ] \begin{bmatrix} f_{bu,1} \\ f_{bu,2} \\ \vdots \\ f_{bu,N} \end{bmatrix} = \begin{bmatrix} \frac{2B}{cT_1} & \frac{2f_c}{c} \\ \frac{2B}{cT_1} & \frac{2f_c}{c} \\ \vdots & \vdots \\ \frac{2B}{cT_1} & \frac{2f_c}{c} \end{bmatrix} \begin{bmatrix} R_{0,1} \\ v_1 \\ R_{0,2} \\ v_2 \\ \vdots \\ R_{0,N} \\ v_N \end{bmatrix} fbu,1fbu,2⋮fbu,N = cT12BcT12B⋮cT12Bc2fcc2fc⋮c2fc R0,1v1R0,2v2⋮R0,NvN
类似地,下斜坡和检查斜坡也有对应的矩阵方程。通过联立求解,可以唯一确定所有目标的距离和速度。
C. CFAR检测门限推导
OS-CFAR的检测门限计算为:
T = α ⋅ X ( k ) T = \alpha \cdot X_{(k)} T=α⋅X(k)
其中 X ( k ) X_{(k)} X(k) 是参考窗口内第 k k k 个顺序统计量, α \alpha α 是门限因子,由所需的虚警概率 P f a P_{fa} Pfa 决定:
P f a = ∑ i = k M ( M i ) ( α 1 + α ) i ( 1 1 + α ) M − i P_{fa} = \sum_{i=k}^{M} \binom{M}{i} \left(\frac{\alpha}{1+\alpha}\right)^i \left(\frac{1}{1+\alpha}\right)^{M-i} Pfa=i=k∑M(iM)(1+αα)i(1+α1)M−i
其中 M M M 是参考单元数。
D. 相位差测角原理
对于间距为 d d d 的两天线,目标方向 θ \theta θ 引起的相位差为:
Δ ϕ = 2 π d sin θ λ \Delta\phi = \frac{2\pi d \sin\theta}{\lambda} Δϕ=λ2πdsinθ
通过测量相位差,可以估计目标角度:
θ ^ = arcsin ( λ Δ ϕ 2 π d ) \hat{\theta} = \arcsin\left(\frac{\lambda \Delta\phi}{2\pi d}\right) θ^=arcsin(2πdλΔϕ)
相位测量的克拉美罗界(CRB)为:
var ( θ ^ ) ≥ c 2 4 π 2 f 2 d 2 cos 2 θ ⋅ 1 2 SNR \text{var}(\hat{\theta}) \geq \frac{c^2}{4\pi^2 f^2 d^2 \cos^2\theta} \cdot \frac{1}{2\text{SNR}} var(θ^)≥4π2f2d2cos2θc2⋅2SNR1
E. 最小范数谱估计的推导
协方差矩阵的特征分解:
R = ∑ i = 1 K λ i e i e i H + σ 2 ∑ i = K + 1 M e i e i H \mathbf{R} = \sum_{i=1}^{K} \lambda_i \mathbf{e}_i \mathbf{e}_i^H + \sigma^2 \sum_{i=K+1}^{M} \mathbf{e}_i \mathbf{e}_i^H R=i=1∑KλieieiH+σ2i=K+1∑MeieiH
其中前 K K K 个特征值对应信号子空间,后 M − K M-K M−K 个对应噪声子空间。
最小范数权重向量满足约束优化问题:
min ∣ ∣ w ∣ ∣ 2 subject to w H E N = 0 \min ||\mathbf{w}||^2 \quad \text{subject to} \quad \mathbf{w}^H \mathbf{E}_N = \mathbf{0} min∣∣w∣∣2subject towHEN=0
使用拉格朗日乘数法求解,得到:
w o p t = P S u 1 u 1 H P S u 1 \mathbf{w}_{opt} = \frac{\mathbf{P}_S \mathbf{u}_1}{\mathbf{u}_1^H \mathbf{P}_S \mathbf{u}_1} wopt=u1HPSu1PSu1
其中 P S = E S E S H \mathbf{P}_S = \mathbf{E}_S \mathbf{E}_S^H PS=ESESH 是信号子空间投影矩阵, u 1 = [ 1 , 0 , . . . , 0 ] T \mathbf{u}_1 = [1, 0, ..., 0]^T u1=[1,0,...,0]T。
F. 三段式波形的最优参数选择
考虑总测量时间约束 T t o t a l = 2 T 1 + T 2 T_{total} = 2T_1 + T_2 Ttotal=2T1+T2,在给定距离和速度分辨率要求下,最优参数满足:
min T 1 , T 2 P g h o s t subject to 2 T 1 + T 2 ≤ T m a x \min_{T_1,T_2} P_{ghost} \quad \text{subject to} \quad 2T_1 + T_2 \leq T_{max} T1,T2minPghostsubject to2T1+T2≤Tmax
其中虚假目标概率 P g h o s t P_{ghost} Pghost 与 T 1 / T 2 T_1/T_2 T1/T2 比值相关。通过蒙特卡洛仿真,得出最优比值约为0.7。
这些深入的数学推导为系统设计提供了坚实的理论基础,确保了算法的最优性和鲁棒性。