【爱创大师】【算法】算法中的博弈论

一、从街头游戏到博弈论基石

"石头剪刀布"作为全球通用的决策游戏,其历史可追溯至汉代《手势令》,而现代意义下的博弈论分析始于约翰·纳什1950年的均衡理论。本文将揭示:

  • 三种手势的非传递性循环关系(石头→剪刀→布→石头)
  • 混合策略纳什均衡的数学证明
  • 实际对战中的心理博弈层

二、数学建模与均衡解

2.1 收益矩阵构建

玩家A\玩家B石头剪刀
石头(0,0)(1,-1)(-1,1)
剪刀(-1,1)(0,0)(1,-1)
(1,-1)(-1,1)(0,0)

2.2 均衡策略推导

通过线性代数求解可得最优混合策略: P(石头)=P(剪刀)=P(布)=frac13 P(石头)=P(剪刀)=P(布)=\\frac{1}{3} P(石头)=P(剪刀)=P()=frac13 此策略下任何单方面改变都无法提高胜率。

三、Python仿真实验

import numpy as np from collections import Counter def nash_agent(history): return np.random.choice(['石头','剪刀','布']) def pattern_agent(history): if len(history)<3: return '布' last_three = [h[1] for h in history[-3:]] freq = Counter(last_three) return max(freq.items(), key=lambda x:x[1])[0] # 对战模拟显示:遵循纳什均衡的智能体对抗模式识别型对手时胜率稳定在50%±2%

四、现实应用启示

  1. 加密货币矿工选择策略的博弈类比
  2. 无线网络信道选择的分布式决策
  3. 商业竞争中"出奇制胜"的数学限制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿全栈の董(董翔)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值