Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting(PIFA2017)
本文基于1中的PIFA,都可以定位任意姿态的人脸特征点,但是不同之处在于PIFA采用随机蕨作为回归器评估映射参数和3D人脸形状参数,而本篇文章采用基于CNN的回归器来评估映射参数和3D人脸形状参数。
本篇文章的核心主要是提出了一个新的3DMM拟合算法,通过融合强大的级联CNN回归器,3D形变模型和mirrorability constraint来实现任意姿态的人脸特征点定位。
本文的流程示意图如下所示:
1 3D形变模型(3DMM)
S为3D人脸形状,相比上面PIFA2015,在S中加入了表情差异。
U为2D人脸形状。
3D人脸形状到2D人脸形状之间的转换。
目标函数:
2 基于CNN的双级联回归
回归1用来估计投影矩阵:
回归2用来估计3D人脸形状参数P:
3 总结
本文基于PIFA2015,都采用了双回归器对映射参数和3D人脸形状做回归。不同的是本文在人脸形状中加入了表情参数并且采用基于CNN的级联回归器来预测映射矩阵和3D人脸形状,总体上比PIFA实现了更好的定位效果。