人脸对齐(十二)--PIFA2017

本文介绍了一种改进的PIFA2017方法,利用基于CNN的级联回归器进行3D人脸模型拟合,实现了任意姿态下的人脸特征点定位。该方法在人脸形状中加入表情差异,并使用mirrorability约束进一步提升定位准确性。

Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting(PIFA2017)

本文基于1中的PIFA,都可以定位任意姿态的人脸特征点,但是不同之处在于PIFA采用随机蕨作为回归器评估映射参数和3D人脸形状参数,而本篇文章采用基于CNN的回归器来评估映射参数和3D人脸形状参数。

本篇文章的核心主要是提出了一个新的3DMM拟合算法,通过融合强大的级联CNN回归器,3D形变模型和mirrorability constraint来实现任意姿态的人脸特征点定位。

本文的流程示意图如下所示:

1 3D形变模型(3DMM)

S为3D人脸形状,相比上面PIFA2015,在S中加入了表情差异。

 U为2D人脸形状。

3D人脸形状到2D人脸形状之间的转换。

目标函数:

 

2 基于CNN的双级联回归 

回归1用来估计投影矩阵:

 

回归2用来估计3D人脸形状参数P:

3 总结

本文基于PIFA2015,都采用了双回归器对映射参数和3D人脸形状做回归。不同的是本文在人脸形状中加入了表情参数并且采用基于CNN的级联回归器来预测映射矩阵和3D人脸形状,总体上比PIFA实现了更好的定位效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值