python算法中的数学算法(详解下)

这篇博客详细介绍了Python在数学算法中的应用,涵盖了数值优化(均值、方差、协方差、相关系数、概率分布和假设检验)、随机数生成、积分和微分(数值积分、数值微分、微积分和微分方程求解)以及计算几何(sympy和numpy库的应用、向量、矩阵、平面和空间几何)。通过实例展示了如何使用Python库如scipy、numpy和sympy进行相关计算,帮助读者掌握Python数学算法基础知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一. 学习目标:

二. 学习内容:

Ⅰ. 数值优化

①、均值

②、方差

③、协方差

④、相关系数

⑤、概率分布

⑥、假设检验

Ⅱ. 随机数生成

Ⅲ. 积分和微分

①、数值积分

②、数值微分

③、微积分

④、微分方程求解

Ⅳ. 计算几何

①、sympy库的应用

②、numpy库的应用

③、向量

④、矩阵

⑤、平面

⑥、空间几何


学习目标:

  • 一分钟掌握 python 数学算法入门知识

学习内容:

  1. 数值优化
  2. 随机数生成
  3. 积分和微分
  4. 计算几何

Ⅰ. 数值优化

①、均值

Python数值优化均值(mean optimization)是指通过迭代寻找一组数据的均值,使得这组数据的均值最小或最大。在实际应用中,例如金融领域的投资组合优化、数据挖掘中的聚类分析等,均值优化都是一个非常重要的问题。

下面举一个简单的例子说明Python中如何实现均值优化。假设有一组数据:

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

现在要通过均值优化算法来求出这组数据的均值。一种简单的方法是使用随机梯度下降算法(SGD),具体步骤如下:

  1. 首先初始化均值为任
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

除不掉的灰色

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值