应用数学与机器学习基础 - 数值计算之梯度之上Jacobian和Hessian矩阵篇

序言

在数值计算与优化理论的广阔天地里,梯度作为一阶导数的向量表示,是理解函数局部变化率及进行最优化求解的基础工具。然而,当问题的复杂度提升,单一梯度信息往往不足以全面刻画函数的多变量间相互作用及更高阶的变化特性。此时, Jacobian \text{Jacobian} Jacobian矩阵与 Hessian \text{Hessian} Hessian矩阵便成为不可或缺的数学利器,它们分别扩展了梯度概念至向量值函数与二阶导数领域,为深入探索函数性质、设计高效算法提供了坚实的理论基础。

概述

Jacobian矩阵

  • Jacobian \text{Jacobian} Jacobian矩阵是函数值从向量空间到向量空间的线性映射的一阶偏导矩阵,它在多变量向量值函数的微分学中占据核心地位。
  • 该矩阵的每一行代表函数输出向量中某一分量对所有输入变量的一阶偏导数,从而全面揭示了输入向量变化时,输出向量如何线性地变化。
  • 在机器学习的神经网络中, Jacobian \text{Jacobian} Jacobian矩阵常用于反向传播算法中,帮助计算梯度。

Hessian矩阵

  • Hessian \text{Hessian} Hessian矩阵则是函数二阶偏导数的方阵,反映了函数在某一点上的局部曲率信息。
  • 它不仅告诉我们函数值如何随单个变量的二阶变化,还揭示了变量间相互作用的二阶效应。
  • Hessian \text{Hessian} Hessian矩阵在优化算法中尤为重要,其正定性可用于判断局部极小值点,负定性则指向局部极大值,而零特征值则暗示了可能存在的鞍点或平坦区域。
  • 此外, Hessian \text{Hessian} Hessian矩阵还应用于牛顿法等二阶优化算法中,通过直接利用二阶信息加速收敛过程。

数值计算之梯度之上Jacobian和Hessian矩阵

  • Jacobian矩阵

  • 有时我们需要计算输入和输出都为向量的函数的所有偏导数。包含所有这样的偏导数的矩阵被称为Jacobian矩阵

  • 具体来说,如果我们有一个函数: f : R m → R n \boldsymbol{f}:\mathbb{R}^m\to\mathbb{R}^n f:RmRn f \boldsymbol{f} f Jacobian \text{Jacobian} Jacobian矩阵 J ∈ R n × m \boldsymbol{J}\in\mathbb{R}^{n\times m} JRn×m定义为: J i , j = ∂ ∂ x j f ( x ) i J_{i,j}=\displaystyle\frac{\partial}{\partial x_j}f(\boldsymbol{x})_i Ji,j=xjf(x)i

  • Hessian矩阵


  • 有时,我们也对导数的导数高兴去,即二阶导数(second derivative)。

  • 例如,有一个函数 f : R m → R n f:\mathbb{R}^m\to\mathbb{R}^n f:RmRn f f f的一阶导数(关于 x j x_j xj)关于 x i x_i xi的导数记为: ∂ 2 ∂ x i ∂ x j f \displaystyle\frac{\partial^2}{\partial x_i\partial x_j}f xixj2f

  • 在一维情况下,我们可以将二阶导数: ∂ 2 ∂ x i 2 f \displaystyle\frac{\partial^2}{\partial x_i^2}f xi22f,记为 f ′ ′ ( x ) f''(x) f′′(x)

  • 二阶导数告诉我们的一阶导数将如何随着输入的变化而改变。

    • 它表示只基于梯度信息的梯度下降步骤是否会产生如我们预期的那样大的改善,因此是重要的。
    • 我们可以认为,二阶导数是对曲率的衡量。假设我们有一个二次函数(虽然很多实践中的函数都不是二次,但至少在局部可以很好地用二次近似)。
    • 如果这样的函数具有零二阶导数,那就没有曲率。也就是一条完全平坦的线,仅用梯度就可以预测它的值。
    • 我们使用沿负梯度方向大小为 ϵ \epsilon ϵ的下降步,当该梯度是 1 1 1时,代价函数将下降 ϵ \epsilon ϵ
    • 如果二阶导数是负的,函数曲线向下凹陷 (向上凸出),因此代价函数将下降的比 ϵ \epsilon ϵ多。
    • 如果二阶导数是正的,函数曲线是向上凹陷(向下凸出),因此代价函数将下降的比 ϵ \epsilon ϵ少。
    • 图例1可以看出不同形式的曲率如何影响基于梯度的预测值与真实的代价函数值的关系。
  • 当我们的函数具有多维输入时,二阶导数也有很多。可以这些导数合并成一个矩阵,称为Hessian矩阵Hessian矩阵 H ( f ) ( x ) \boldsymbol{H}(f)(\boldsymbol{x}) H(f)(x)定义为:
    H ( f ) ( x ) i j = ∂ 2 ∂ x i ∂ x j f ( x ) \boldsymbol{H}(f)(\boldsymbol{x})_{ij}=\displaystyle\frac{\partial^2}{\partial x_i\partial x_j}f(\boldsymbol{x}) H(f)(x)ij=x<

<think>好的,我现在需要分析用户提供的这段JavaScript代码,并解释它的功能。首先,我会通读代码,理解每个部分的作用。 这段代码定义了一个名为getQ的函数。函数一开始获取了user_nickname输入框的值,存储在userid变量中。如果userid是null或undefined,函数返回false。否则,发起一个AJAX POST请求到../services/Qxgl.ashx,传递actionid参数。请求头里有一个Authorization令牌,看起来像是某种认证信息。 成功回调函数处理返回的msg数据,遍历msg.ds数组,对每个item,通过typeid设置对应的复选框为选中状态。然后收集所有选中的复选框的值,用逗号拼接后去掉最后一个逗号,将结果填入typename输入框。 接下来,我需要确认各个部分的细节是否正确。例如,检查jQuery选择器是否正确,AJAX调用的参数是否合理,以及数据处理是否有潜在错误。比如,$.each遍历msg.ds是否正确,假设msg.ds是一个数组。另外,拼接结果时使用substring去除末尾逗号是否可靠,是否有更稳妥的方法。 还要注意可能的安全问题,比如硬编码的Authorization头,这可能存在安全风险,但用户可能已经处理了。此外,用户权限验证是否在服务端进行,这里只是前端控制,需提醒用户不能仅依赖前端验证。 最后,将这些分析整理成结构清晰的解释,分步骤说明代码的功能潜在注意事项,确保用户能够理解每个部分的作用及可能的改进点。</think>这是一个典型的基于jQuery的AJAX请求实现,主要用于获取并设置用户权限信息。让我们分步骤解析这个函数的功能: 1. **函数定义用户ID获取** ```javascript var getQ = function () { var userid = $('#user_nickname').val(); // 获取用户输入框的值 ``` 2. **空值校验** ```javascript if (userid == null || userid == undefined) { // 验证用户ID有效性 return false; } ``` 3. **AJAX请求配置** ```javascript $.ajax({ type: "POST", // 使用POST方法 url: "../services/Qxgl.ashx", // 后端接口地址 headers: { // 请求头认证信息 "Authorization": "0772A4AA051DDEBB393DC164B19A32E57C4FEEAB27A77820" }, ``` 4. **请求参数传递** ```javascript data: { action: "getQ", // 执行动作类型 id: userid // 传递用户ID参数 }, ``` 5. **成功回调处理** ```javascript success: function (msg) { // 遍历返回数据集 $.each(msg.ds, function (index, item) { // 根据typeid勾选对应复选框 $('#a' + item.typeid).attr("checked", true); }) // 拼接选中值 var result = ""; $("input[name='select_checkbox']:checked").each(function () { result += $(this).val() + ','; }); // 去除末尾逗号 if (result != "") { result = result.substring(0, result.lastIndexOf(',')); } // 填充到显示框 $("#typename").val(result); } ``` **功能总结**: - 这是一个用户权限查询功能 - 通过用户输入的用户名查询关联的权限配置 - 将查询结果转换为复选框勾选状态 - 汇总选中权限显示在文本框中 **潜在注意事项**: 1. 硬编码的`Authorization`头存在安全风险,建议动态生成 2. 缺少错误处理逻辑(error回调) 3. 使用字符串拼接处理结果可以考虑改用`Array.join()` 4. 权限控制不能仅依赖前端验证,必须配套后端验证 5. 对`msg.ds`的数据结构有强依赖,建议增加数据校验 6. 建议使用`.prop()`代替`.attr()`操作复选框状态
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绎岚科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值