- 博客(2398)
- 资源 (9)
- 收藏
- 关注

原创 Elastic 线下 Meetup 将于 2025 年 7 月 27 号下午在深圳举行
2025ElasticMeetup深圳站将于7月27日在腾讯滨海大厦举行,聚焦AI驱动搜索技术前沿。活动邀请Elastic、腾讯云等专家分享向量搜索、RAG技术演进、百亿级AISearch优化实践等议题,涵盖搜索智能化、多模态检索、日志系统应用等热点。刘晓国、陈曦等资深技术人将深入解析行业趋势,活动还设有茶歇交流及抽奖环节。需提前实名报名并验证入场。
2025-07-01 09:41:47
1261

原创 Elastic:如何成为一名 Elastic 认证工程师,Elastic 认证分析师及 Elastic 认证可观测性工程师
Elasticsearch 无疑是是目前世界上最为流行的大数据搜索引擎。根据 DB - Engines 的统计,Elasticsearch 雄踞排行榜第一名,并且市场还在不断地扩大:能够成为一名 Elastic 认证工程师也是很多开发者的梦想。这个代表了 Elastic 的最高认证,在业界也得到了很高的认知度。得到认证的工程师,必须除了具有丰富的 Elastic Stack 知识,而且必须有丰富的操作及有效的解决问题的能力。拥有这个认证证书,也代表了个人及公司的荣誉。针对个人的好处是,你可以..
2020-10-28 11:54:13
25656
19

原创 Elastic:开发者上手指南
你们好,我是Elastic的刘晓国。如果大家想开始学习Elastic的话,那么这里将是你理想的学习园地。在我的博客几乎涵盖了你想学习的许多方面。在这里,我来讲述一下作为一个菜鸟该如何阅读我的这些博客文章。我们可以按照如下的步骤来学习:1)Elasticsearch简介:对Elasticsearch做了一个简单的介绍2)Elasticsearch中的一些重要概念:cluster,n..........................................................
2020-02-25 20:01:55
163962
98

原创 Elastic:培训视频 - 在生产环境中配置 Fleet Server 和 Elastic Agent 之间的安全
在这篇文章中,我将会把我写的有些内容录制成视频,供大家参考。希望对大家有所帮助。优酷的视频频道地址在这里。Elastic 简介及Elastic Stack 安装:优酷,腾讯 Elastic Stack docker 部署:优酷,腾讯 Elasticsearch中的一些重要概念(Cluster/Shards/Replica/Document/Type/Index):优酷,腾讯 开始使用El...............
2020-01-06 15:31:54
17593
12

原创 Elasticsearch 简介
Elasticsearch是一个非常强大的搜索引擎。它目前被广泛地使用于各个IT公司。Elasticsearch是由Elastic公司创建并开源维护的。它的开源代码位于https://github.com/elastic/elasticsearch。同时,Elastic公司也拥有Logstash及Kibana开源项目。这个三个开源项目组合在一起,就形成了 ELK软件栈。他们三个共同形成了一个强大的...
2019-08-08 16:04:31
174284
32
原创 Elasticsearch 重命名索引
本文介绍了Elasticsearch中四种重命名索引的实用方法:别名(alias)、Clone API、快照/恢复和Reindex API。由于Elasticsearch的分布式架构不允许直接重命名索引,每种方法都有其适用场景:别名最轻量且实时生效,用于简单名称变更;Clone API通过硬链接快速复制索引;快照/恢复基于备份实现重命名;Reindex API最强大但资源消耗大,适合数据转换场景。文章详细说明了各方法的操作步骤、限制条件和最佳实践,帮助用户根据具体需求选择合适方案。
2025-07-19 08:36:10
409
原创 AI 驱动的仪表板:从愿景到 Kibana
本文介绍了一种利用大语言模型(LLM)将手绘仪表板图像自动转换为Kibana仪表板的方法。作者通过提供Elasticsearch索引映射和可视化模板,让LLM分析图像内容并生成符合要求的JSON配置,再通过Kibana API创建完整仪表板。该方法解决了直接让LLM生成NDJSON格式时常见的格式错误问题,采用模板替换的方式提高了可靠性和扩展性。文章详细说明了实现步骤,包括数据准备、LLM配置、模板填充和仪表板创建等关键环节,并提供了一个可运行的Python应用示例。最后展示了生成仪表板的URL和ID,证明
2025-07-18 15:48:11
794
原创 Elasticsearch:ES|QL 改进的时间线
ES|QL发展历程概览:Elasticsearch推出的ES|QL查询语言自8.11版本技术预览以来持续进化。8.12优化性能并支持空间数据,8.13引入异步查询和字符串处理函数。8.14正式发布后,新增分组统计和空间函数。8.15-8.17逐步完善类型转换、聚合分析和时间精度。8.18和9.0版本推出跨索引连接、全文评分和KQL集成等高级功能。每个版本都通过新增命令、函数和性能优化,不断提升数据处理能力,满足可观测性、安全性等多样化场景需求。
2025-07-18 14:15:34
582
原创 在 Windows 上使用 Docker 运行 Elastic Open Crawler
本文介绍了如何在Windows系统上通过Docker运行Elastic OpenCrawler的两种方法。虽然OpenCrawler没有官方Windows支持,但通过配置Docker环境仍可实现运行。文章详细说明了准备工作(安装Git、Docker Desktop等)、创建配置文件,并分别介绍了直接使用Docker镜像和通过docker-compose运行的具体步骤,特别强调了Windows路径格式与Unix路径格式的转换要点。最后,作者展示了成功运行后的日志输出,证明OpenCrawler可以在Windo
2025-07-17 10:38:27
966
原创 Elastic 和腾讯云 AI 搜索技术让敦煌数字经藏对所有人开放
敦煌数字经藏中的古籍现在已实现在线全民可访问。敦煌研究院正式发布了数字经藏数据库,收录了超过 9,900 册敦煌文献和超过 60,700 张包含佛经、法律法规、合同、丝绸画等内容的图片。借助 Elastic 和腾讯云 AI 搜索及大型语言模型( LLM )技术,古籍中的繁体中文和罕见字符被“唤醒”,变得可搜索、可翻译,不再晦涩难懂。敦煌数字经藏将文明深入带入每个人的眼中。
2025-07-17 09:48:20
536
原创 Elasticsearch MCP 服务器现已在 AWS Marketplace 上提供
我们很高兴地宣布,Elasticsearch Model Context Protocol( MCP )服务器现已在 AWS Marketplace 上提供。被归类于 AI Tools and Agents 类别,确保客户可以轻松在 AWS 上发现并以容器方式部署 Elasticsearch MCP 服务器。无论你是在构建 AI 助理、智能代理,还是高级分析平台,Elastic 都能为其提供强大支撑。
2025-07-17 09:08:47
993
原创 Elastic 被评为 2025 年 Gartner® 可观测平台魔力象限™中的领导者
摘要:Elastic连续第二年被评为Gartner可观测平台魔力象限领导者,其AI驱动的可观测性解决方案帮助客户从被动监控转向实时调查。关键优势包括:原生支持OpenTelemetry标准、AI助手实现自然语言分析、零配置AIOps自动检测异常、全新的ES|QL高级查询语言,以及可降低65%存储成本的logsdb技术。Elastic通过开放架构和AI创新,为复杂系统提供统一可视性和PB级数据处理能力,满足企业优化性能和控制成本的双重需求。
2025-07-12 09:52:37
899
原创 上下文更长 ≠ 更好:为什么 RAG 仍然重要
摘要: 本文对比了RAG(检索增强生成)与直接使用长上下文LLM(如Gemini1.5)的优劣。实验表明,RAG在成本(低1250倍)、速度(1秒vs45秒)和准确性(100%正确率)上均优于全上下文LLM。后者因处理百万级tokens时易丢失重点且成本高昂,而RAG通过Elasticsearch的混合搜索(全文/语义/过滤)精准筛选信息,显著提升LLM回答质量。结论强调:大上下文模型虽适用于无过滤场景,但RAG仍是高效、经济的首选方案。(150字) 核心发现: 成本:RAG单次查询$0.00008,全LL
2025-07-12 09:24:21
1191
原创 安全领域的 AI 采用:主要用例和需避免的错误
AI在网络安全领域呈现双重影响:既提升防御能力又加剧威胁复杂性。文章探讨了AI改变安全运营的五大核心用例:威胁检测、SOC自动化、事件响应、欺诈分析和数据接入。同时指出实施AI时需避免的常见错误:治理不足、访问控制薄弱、数据隐私风险、过度依赖自动化等。建议组织采取数据质量优先、系统集成、人员培训等最佳实践,并强调ElasticSecurity平台如何将AI深度集成到安全分析流程中。文中特别提醒使用第三方AI工具时的数据安全风险,体现了对AI应用合规性的重视。
2025-07-11 14:31:22
1070
原创 使用 Maximum Marginal Relevance 实现搜索结果多样化
本文介绍了如何使用Elasticsearch和Python实现最大边际相关性(MMR)算法来优化搜索结果。传统搜索仅关注相关性,容易导致结果冗余(如10条相似的黑色裤子)。MMR通过平衡相关性和多样性,在迭代过程中选择既与查询相关又与已选结果差异化的内容。文章详细讲解了MMR算法原理、实现代码(包括向量搜索和重排序),并展示了在时尚产品搜索中的应用效果对比。最后指出MMR可广泛应用于电商、新闻、推荐系统等场景,通过调整λ参数满足不同需求,强调搜索不仅需要相关性,也需要多样性才能带来更好的用户体验。
2025-07-11 14:03:44
1171
原创 Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
摘要:Elasticsearch 8.19/9.1版本增强了semantic_text搜索功能,支持自定义分块设置和向量量化配置。用户现在可以灵活控制文本分块策略(基于句子/单词/禁用分块)和量化方法(如BBQ),以适应专业用例需求。这些改进使语义搜索既保持开箱即用的便捷性,又提供高级配置选项,同时兼容未来功能扩展。新特性已在Serverless环境中可用,即将登陆Stack托管的Elasticsearch。(149字)
2025-07-10 08:20:57
1021
原创 Elasticsearch 字符串包含子字符串:高级查询技巧
本文介绍了Elasticsearch中实现子字符串搜索的多种高级技术。主要内容包括:1)使用query_string、match_phrase和wildcard查询进行子字符串匹配;2)通过自定义分析器和n-gram分词器提升搜索准确性;3)ES|QL提供的LOCATE、MATCH等字符串处理函数;4)区间查询和跨度查询等高级匹配方法。文章对比了不同技术的适用场景,并指出前缀通配符可能影响性能等问题,为开发人员提供了全面的Elasticsearch子字符串搜索解决方案。
2025-07-09 09:04:47
1239
原创 Elasticsearch:使用 Significant Terms Aggregation 识别被盗信用卡的常见交易
使用 Significant Terms Aggregation 识别被盗信用卡的常见交易。
2025-07-08 12:04:52
605
原创 揭示独特模式:Elasticsearch 中 significant terms 聚合指南
摘要:Elasticsearch的significantterms聚合功能能够通过统计分析方法发现数据中非显而易见的有价值洞察。与普通terms聚合不同,它会比较子数据集与整体数据集的词项分布,识别出统计上显著异常的关联模式。文章通过手机销售数据分析的具体案例,展示了如何发现不同职业群体对iPhone16的独特偏好,以及如何结合语义搜索识别与"good performance"评价显著相关的机型。这种聚合方法在消费者行为分析、欺诈检测、质量评价等多个领域都有重要应用价值,能够揭示数据背后
2025-07-08 11:15:25
1115
原创 使用 collapse 和 cardinality 实现高效分页在 Elasticsearch 中
本文介绍了在Elasticsearch中使用collapse功能对产品变体进行分组时遇到的分页挑战。通过示例展示了如何将collapse与cardinality聚合结合使用,以获取真实的唯一分组数量,从而解决分页问题。文章指出,单独使用collapse时返回的hits.total.value反映的是原始文档数量而非分组后数量,会导致分页显示错误。解决方案是在collapse查询中添加针对相同字段的cardinality聚合,准确计算唯一值数量,实现可靠分页。这种方法特别适用于电商等需要展示产品变体的场景。
2025-07-05 09:47:11
952
原创 APM 最佳实践:从业者指南中的注意事项与禁忌
《高效应用性能管理(APM)实践指南》摘要 应用性能管理(APM)是现代软件系统维护的关键实践,通过持续监控应用程序的前后端性能,确保业务连续性和用户体验。本文系统性地阐述了APM的核心原则、实施策略和最佳实践。 核心要点包括: 现代APM需整合追踪(traces)、指标(metrics)和日志(logs)三类数据,采用自动检测与关键业务手动检测相结合的方案; 有效策略应包含性能监控、错误跟踪、基础设施监控和用户体验指标四个维度; 实施时应遵循端到端可见性、实时监控、以用户为中心等原则,避免过度检测(建议控
2025-07-04 10:40:19
682
原创 Elasticsearch:异常检测入门
本文介绍了在Elastic Stack 9.0.2中使用机器学习进行异常检测的实践方法。通过Kibana自带的示例数据,展示了如何创建三种不同类型的异常检测作业:单指标作业、多指标作业和群体作业。文章详细讲解了数据探索、作业配置、结果分析等关键步骤,并演示了如何使用SingleMetricViewer和AnomalyExplorer工具查看检测结果。此外,还介绍了利用机器学习模型进行未来行为预测的方法。整个过程突出了机器学习在运维场景中的价值,能够自动识别异常事件,减轻人工监控负担,帮助运维人员提前发现潜在
2025-07-03 15:26:16
753
原创 祝贺我们首批通过 Elastic 认证的生成式 AI 销售合作伙伴
摘要:Elastic推出生成式AI合作伙伴认证计划,首批认证的合作伙伴包括GIOS、KPMG等6家欧洲和中东企业。这些合作伙伴已完成严格的ElasticAI培训,具备开发RAG解决方案等能力。Elastic通过向量数据库和AI集成,简化企业AI应用开发流程。认证合作伙伴将帮助客户克服AI试点到规模化应用的挑战,提供专业技术支持和创新方案。Elastic强调合作伙伴在推动AI解决方案落地中的关键作用,同时提醒用户注意第三方AI工具的数据安全风险。(149字)
2025-07-02 15:11:33
966
原创 使用 JavaScript、Mastra 和 Elasticsearch 构建一个具备代理能力的 RAG 助手
在这篇文章中,我们将探索如何使用 Mastra 和一个轻量级的 JavaScript Web 应用来构建一个具备代理能力的 RAG 助手,并与它进行交互。通过将这个代理连接到 Elasticsearch,我们为它提供了访问结构化球员数据的能力,并能执行实时统计聚合,从而为你提供基于球员数据的推荐。前往 GitHub 仓库查看详情;README 文件提供了如何克隆并在本地运行该应用的说明。
2025-07-02 14:45:22
1219
原创 Elastic 构建 Elastic Cloud Serverless 的历程
摘要:Elastic团队分享了构建Elastic Cloud Serverless无服务器平台的经验。该平台通过云原生架构重构,将Elastic Stack从有状态系统转变为按需扩展的无服务器服务,利用对象存储替代本地磁盘,并采用Kubernetes实现跨云部署。文章详细介绍了架构演进、性能优化、自动扩缩容机制和定价模型设计,强调通过解耦搜索/索引层、减少API调用等技术突破,在AWS/GCP/Azure三大云上实现了高可用性。平台采用细胞式架构确保韧性,并通过统一控制平面管理分布式资源,最终实现了运维简化
2025-07-01 11:06:36
678
原创 Elasticsearch 排序性能提升高达 900 倍
Elasticsearch 9.0.1和即将发布的9.1版本大幅提升了排序性能,float/half_float排序速度提升83-920倍,integer排序延迟改善41-531倍。优化采用BKD树与distance查询结合的新方法,通过跳过无效数据块显著提高效率。这些改进已应用于Elastic Cloud Serverless,并回溯至8.19版本。性能提升在NYCTaxis和http_logs基准测试中得到验证,将大幅降低Observability、Security等场景的搜索延迟和基础设施成本。Ela
2025-07-01 09:16:18
1177
原创 你以为 Elastic 只做 SIEM?再好好想想!
Elastic重新定义XDR安全防护,通过收购Endgame技术深度整合EDR能力,打造原生统一的安全平台。该方案突破传统EDR的数据处理瓶颈,支持PB级端点、网络、云端数据的实时关联分析,提供跨厂商的无缝防护。平台包含获奖级恶意软件防护、勒索软件防御和行为检测能力,支持Windows/macOS/Linux全平台。创新采用"数据湖"付费模式,仅按实际使用数据计费,包含无限端点授权。通过开源检测规则、AI辅助分析和自动故障排查等功能,实现透明化安全运营。在AV-Comparatives测
2025-06-28 11:12:08
1026
原创 使用 Elasticsearch 构建一个用于真实健康数据的 MCP 服务器
摘要:本文介绍了如何使用FastMCP框架和Elasticsearch构建一个MCP(Model Context Protocol)服务器来管理和分析Apple Health健康数据。文章详细讲解了MCP的三个核心组件(Resources、Tools和Prompts)的实现方法,展示了如何将Elasticsearch作为数据存储后端,并通过Claude Desktop实现自然语言交互查询。该解决方案支持动态数据查询、趋势分析和可视化展示,为LLM代理提供了实时健康数据访问能力。文中包含完整的代码实现、测试方
2025-06-27 10:03:13
1070
原创 Elastic:AI,开箱即用!
Elastic宣布其AI功能现已在Elastic Cloud中默认启用,消除了传统AI部署的复杂流程。该解决方案提供了开箱即用的托管LLM,支持安全、可观测性和搜索领域的AI应用,包括威胁检测、根因分析和自然语言查询等功能。Elastic独特的优势在于将AI深度集成到现有工作流中,支持检索增强生成(RAG)技术,并能统一访问各类数据源。同时平台保持开放架构,允许用户连接第三方LLM。该方案显著降低了AI使用门槛,使企业能立即获得AI驱动的安全防护和运维洞察,无需额外配置或签署第三方合同。
2025-06-26 09:05:07
1219
原创 Elastic 被《Forrester Wave™:2025 年第二季度安全分析平台》评为领导者
Elastic入选Forrester 2025年Q2安全分析平台领导者象限。报告指出,Elastic以工程驱动方式解决安全问题,整合SIEM、XDR和云安全于统一平台,提供AI驱动的检测、开放架构和灵活部署。其优势包括:RAG技术加速警报处理、透明AI增强分析、MITRE ATT&CK规则库,以及混合部署支持。客户数据显示,该平台可缩短99%平均修复时间。Elastic Security将多种安全功能整合,支持SaaS/本地部署,所有检测规则开源。近期与AWS达成战略合作,持续强化安全创新。
2025-06-26 08:22:16
1050
原创 在 Logstash 中使用 Ruby 脚本
摘要:本文介绍了Logstash中Ruby filter插件的使用方法,用于实现高级数据转换。Ruby filter允许在Logstash管道中执行自定义Ruby代码,适用于标准过滤器无法处理的复杂场景,如深度嵌套数据处理、高级字符串处理和复杂业务逻辑实现。文章通过基础示例展示了内联Ruby代码和外部脚本的使用方法,并通过高级示例演示了如何操作嵌套数据结构、拆分事件、执行外部命令解析输出以及使用Ruby内置库。Ruby filter为Logstash管道提供了强大的扩展能力,能够满足各种复杂数据处理需求。
2025-06-25 09:27:42
1470
原创 开始使用 Elastic AI Assistant for Observability 和阿里 Qwen3
本文演示了如何结合Qwen3大模型与Elastic AI Assistant进行日志分析。首先通过Elastic DevTools添加了一条代理服务错误日志记录,然后配置AI Assistant连接器。在Observability模块中安装知识库后,用户可通过自然语言查询(如询问代理服务的临时错误原因)与日志数据进行交互分析。文章还提到当前版本(9.0.01)存在特殊配置需求,并预告后续将介绍使用Kibana创建知识库的方法。整个过程展示了AI技术如何帮助开发者更直观地理解和排查系统问题。
2025-06-25 09:01:56
1020
原创 了解公共部门中的数据网格:支柱、架构和示例
想想那些像公共健康记录、城市规划模型等项目背后的所有数据。政府机构一直在产生大量数据。当数据分散在云平台、本地系统或像卫星和应急响应中心这样的专业环境中时,情况变得更加复杂。找到信息变得困难,更不用说有效利用它了。不同团队使用许多不同的应用程序和数据格式,导致真正的互操作性缺失。尽管他们尽最大努力建设数据驱动的组织,但根据最近 Elastic 的一项研究,65% 的公共部门领导者仍然难以实现实时、规模化地持续使用数据。“一位公共部门领导告诉 Elastic,‘我们的工作时间变长了,这不好,因为我
2025-06-24 10:05:39
961
原创 打破网络安全孤岛:实现防御数据协作
摘要:现代网络战场面临数据孤岛挑战,65%的公共部门在实时数据应用上存在困难。Elastic提出数据网格解决方案,通过跨集群搜索技术实现分布式数据协作,无需集中存储敏感数据。该方法基于四大原则:领域所有权、数据产品化、自助平台和联合治理,可提升90%运维效率,将威胁响应从数天缩短至分钟。为国防部门提供安全、高效的互操作性平台,在尊重数据主权的同时增强决策优势。典型实施周期仅6个月即见效。
2025-06-24 08:43:29
945
1
原创 如何在 Python 中连接 Elasticsearch 并使用 Qwen3 来实现 RAG
本文介绍了如何在本地部署阿里Qwen3大模型并连接到Elasticsearch实现RAG应用。主要内容包括: 创建Elasticsearch API key获取访问凭证 编写Python代码实现RAG流程,包括Elasticsearch查询、上下文构建和Qwen3模型调用 配置环境变量和证书,确保代码正常运行 测试Qwen3模型接口工作正常 修改代码适配最新Elasticsearch版本的数据结构 最终成功运行示例查询"哪些人在茶会",Qwen3准确识别出故事中的角色并给出详细回答 文章
2025-06-23 22:01:21
2129
原创 Elasticsearch:什么是搜索相关性?
搜索相关性是衡量搜索结果与用户查询意图匹配程度的关键指标,其核心在于通过文本分析、个性化算法和内容质量评估实现精准匹配。影响相关性的主要因素包括:1. 关键词匹配技术(TF-IDF等);2. 内容权威性与时效性;3. 用户意图识别;4. 个性化设置(地理位置/搜索历史)。当前行业采用BEIR等基准进行评估,并通过点击率、停留时间等用户行为指标持续优化。随着AI技术发展,语义搜索、向量搜索等创新方法正在重塑相关性标准,Elasticsearch等平台已集成机器学习技术实现智能排序。未来趋势将侧重多模态搜索、生
2025-06-23 14:28:03
1339
原创 通过 AIOps 、生成式 AI 和机器学习实现更智能的可观测性
AIOps:智能运维的未来 摘要:AIOps通过AI和机器学习技术优化IT运维,帮助团队应对云原生时代的数据爆炸、系统复杂性和快速变化三大挑战。它能自动分析海量运维数据,减少告警噪音,加速根因分析,并降低MTTR。随着生成式AI的兴起,AIOps正从解释日志、代码转换等基础功能,向具备上下文感知的智能助理演进。Elastic等平台已整合AI助理和语义搜索能力,但完全自主的运维代理仍需突破推理规划等技术瓶颈。AIOps正从可选能力转变为现代IT运维的核心竞争力,通过渐进式部署可有效建立组织信任,最终实现业务价
2025-06-22 11:25:16
838
1
原创 节省分析师时间:用 AI 实现更智能的防御调查
摘要: 英国(MOD)面临安全分析师倦怠和运营效率低下的挑战,每天需处理大量警报,数据泄露事件激增400%。《国防人工智能战略(2022)》提出通过AI自动化提升效率,Elastic的AI工具(如AIAssistant和AttackDiscovery)可整合多源数据,快速识别威胁,将调查时间从数小时缩短至几分钟,减少74%的人力消耗。统一数据模型支持零信任架构,简化流程并降低成本25%。MOD计划2026年前实现零信任,需依赖数据整合而非增加工具。Elastic的解决方案助力国防安全实现实时协作与高效
2025-06-21 09:18:25
773
原创 从 Elasticsearch 集群中移除一个节点
摘要:本文介绍了从Elasticsearch集群安全移除节点的步骤:1)可选执行同步刷新;2)获取节点名称;3)通过更新集群设置将节点排除;4)等待分片迁移完成后停止节点进程;5)验证集群状态。整个过程确保无数据丢失和性能影响。对于不想管理节点的用户,推荐使用ElasticCloud Serverless托管服务。文章还提供了相关命令和操作指南。(150字)
2025-06-21 08:49:12
956
原创 ECK 简化:在 GCP GKE Autopilot 上部署 Elasticsearch
本文介绍了如何在Google Kubernetes Engine(GKE) Autopilot上部署Elasticsearch集群。主要内容包括:1) 使用GKE Autopilot全托管Kubernetes服务简化集群管理;2) 通过Elastic Cloud on Kubernetes(ECK)运维工具快速部署Elasticsearch和Kibana;3) 详细配置步骤,包括创建集群、安装ECK Operator、部署单节点实例及调整资源配置;4) 如何通过LoadBalancer公开访问Kibana;
2025-06-20 09:17:51
700
02-GraphRAG 和 Elasticseach 8 的创新实践 - 徐胜 上海 20250222
2025-03-03
01-AI 驱动 - 搜索的未来 - 刘晓国 上海 20250222
2025-03-03
04-Elasticsearch 在 AI 驱动下的检索新特性 - 槐新 上海 20250222
2025-03-03
03-基于 ES 与 LLM 技术构建 B站大数据运维智能体实践 - 张勋祥 上海 20250222
2025-03-03
03-Elasticsearch 在 AI 检索与 Serverless 模式成本优化的新特性 王亚宁 北京 20241214
2024-12-17
01-AI 驱动 - 搜索的未来 刘晓国 北京 20241214
2024-12-16
04 - 降本增效的利器,认识一个不同的 Elastic 顾鹏飞 北京 20241214
2024-12-16
02-Kibana 构建高级可视化 包春喜 北京 20241214
2024-12-16
02-Elasticsearch 8.x 向量搜索使用详解 杭州 1.6 2024
2024-12-10
高管指南:如何将生成式AI融入运营
2024-12-05
Elastic帮助企业发挥数据的作用
2024-12-05
Elastic最新产品及解决方案
2024-12-05
02-ES-小工具撬动大杠杆- 日常高效运维 Elastic - 尚雷 线上 20241128
2024-11-29
01-Elastic 向量搜索及 构建 RAG 应用 - 刘晓国 线上 20241128
2024-11-29
05-Elastic Stack 在企业安全运营中的实践和探索- 余锡琨 成都 20240921
2024-09-29
04-腾讯云ES AI增强与向量检索特性介绍 - 陈月望 成都 20240921
2024-09-29
01-Elasticsearch 简单而高效的管道查询语言- ESQL刘晓国 成都 20240921
2024-09-29
02-kibana 创建高级可视化 - 包春喜 成都 20240921
2024-09-29
02- Elastic Meetup-如何系统化的备战 Elastic认证专家考试 - 铭毅天下 线上 20240918
2024-09-18
01 - 一次生产集群 ES Watcher 失效的深度排查与分析 全过程剖析与解决方案 - 尚雷 线上 20240918
2024-09-18
Elasticsearch 可搜索快照 - 降本增效的实践与探索 线上 夏乔 20250717
2025-07-18
【大数据知识库】基于Qwen2.5-14B与Elasticsearch的智能问答系统设计:传统检索与向量检索对比及RAG架构应用
2025-07-10
【AIOps领域】基于M02-双 MCP 赋能ES Luke 南京 20250628CP框架的Elasticsearch与Kibana智能根因分析系统设计:提升企业数据洞察效率和自动化运维能力
2025-06-28
03-Elasticsearch 数据流转之道 - 从写入到查询的技术探秘 尚雷.南京 20250628
2025-06-28
04-ES日志集群大规模迁移实践-李猛-南京-20250618
2025-06-28
腾讯云 ES AI 搜索优化实践 刘忠奇 线上 20250605
2025-06-05
ES/Ksibana 双MCP框架下的新一代AiOps实践 Luke 线上 20250521
2025-05-22
03-Elasticsearch跨境电商搜索优化实践 欧阳楚才 杭州 20250419
2025-04-19
02-阿里云Elasticsearch向量引擎百亿级数据优化实践 魏子珺 杭州 20250419
2025-04-19
05-ES AI Assistant集成 DeepSeek QwQ,搭建智能运维助手 槐新 杭州 20250419与应用场景演示
2025-04-19
04-Higress x Elasticsearch构建更智能的AI网关 程治玮 20250419
2025-04-19
00-Elastic Pioneer-项目
2025-04-19
Elasticsearch 8.17 Logsdb:企业降本增效利器 程地华 线上 20250416
2025-04-17
04 - 腾讯云 ES AI 搜索优化实践 - 刘忠奇 武汉 20250329
2025-03-31
02 - ES 在绿盟企业安全平台的应用实践 - 陆攀 武汉 20250329
2025-03-31
01 - AI 驱动 - 搜索的未来 -刘晓国 武汉 20250329
2025-03-31
05 -Elasticsearch 存算分离架构在小米的应用实践 - 周明裕 郑钧元 武汉 20250329
2025-03-31
03 - Agentic RAG 构建之路 - 李捷 武汉 20250329
2025-03-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人