- 博客(2414)
- 资源 (9)
- 收藏
- 关注

原创 Elastic 线下 Meetup 将于 2025 年 9 月 6 号下午在成都举行
2025年9月6日,ElasticMeetup成都站将在腾讯成都大厦举办。活动由Elastic、腾讯和新智锦绣联合主办,聚焦AI驱动的搜索技术发展。主要内容包括:Elastic社区布道师刘晓国讲解向量搜索和RAG技术;腾讯云专家张小伟介绍ESServerless日志分析方案;Elastic架构师李捷分享AgenticRAG构建经验。活动包含主题演讲、茶歇交流及抽奖环节,需提前实名报名。
2025-07-31 11:02:20
665

原创 Elastic:如何成为一名 Elastic 认证工程师,Elastic 认证分析师及 Elastic 认证可观测性工程师
Elasticsearch 无疑是是目前世界上最为流行的大数据搜索引擎。根据 DB - Engines 的统计,Elasticsearch 雄踞排行榜第一名,并且市场还在不断地扩大:能够成为一名 Elastic 认证工程师也是很多开发者的梦想。这个代表了 Elastic 的最高认证,在业界也得到了很高的认知度。得到认证的工程师,必须除了具有丰富的 Elastic Stack 知识,而且必须有丰富的操作及有效的解决问题的能力。拥有这个认证证书,也代表了个人及公司的荣誉。针对个人的好处是,你可以..
2020-10-28 11:54:13
25701
19

原创 Elastic:开发者上手指南
你们好,我是Elastic的刘晓国。如果大家想开始学习Elastic的话,那么这里将是你理想的学习园地。在我的博客几乎涵盖了你想学习的许多方面。在这里,我来讲述一下作为一个菜鸟该如何阅读我的这些博客文章。我们可以按照如下的步骤来学习:1)Elasticsearch简介:对Elasticsearch做了一个简单的介绍2)Elasticsearch中的一些重要概念:cluster,n..........................................................
2020-02-25 20:01:55
164470
98

原创 Elastic:培训视频 - 在生产环境中配置 Fleet Server 和 Elastic Agent 之间的安全
在这篇文章中,我将会把我写的有些内容录制成视频,供大家参考。希望对大家有所帮助。优酷的视频频道地址在这里。Elastic 简介及Elastic Stack 安装:优酷,腾讯 Elastic Stack docker 部署:优酷,腾讯 Elasticsearch中的一些重要概念(Cluster/Shards/Replica/Document/Type/Index):优酷,腾讯 开始使用El...............
2020-01-06 15:31:54
17639
12

原创 Elasticsearch 简介
Elasticsearch是一个非常强大的搜索引擎。它目前被广泛地使用于各个IT公司。Elasticsearch是由Elastic公司创建并开源维护的。它的开源代码位于https://github.com/elastic/elasticsearch。同时,Elastic公司也拥有Logstash及Kibana开源项目。这个三个开源项目组合在一起,就形成了 ELK软件栈。他们三个共同形成了一个强大的...
2019-08-08 16:04:31
174422
32
原创 使用 Elasticsearch 和 AI 构建智能重复项检测
摘要:本文探讨了如何利用Elasticsearch结合AI技术构建智能重复检测系统,解决金融和保险领域的申请重复问题。系统通过Elasticsearch的音近搜索功能处理姓名拼写差异,使用AI模型生成地址变体,并采用本地LLM进行最终去重判断。文章详细介绍了从环境搭建、索引配置到实际应用的完整流程,包括处理姓名变异、地址差异等复杂场景。该方案不仅能有效识别"Katherine Johnson"与"Kate Johnson"等变体名称的重复申请,还可应用于政府服务、医疗
2025-07-31 10:57:24
556
原创 统一你的数据:使用 ES|QL 的跨集群搜索现在已正式发布!
Elasticsearch宣布正式发布基于ES|QL的跨集群搜索(CCS)企业级功能。该功能允许用户通过单一查询分析分布在多个集群中的数据,支持地理分布、环境隔离等多种部署场景。新版本采用分布式查询处理架构,具备弹性故障处理机制,支持三种ENRICH数据增强模式,并优化了大规模集群下的性能表现。系统会记录详细的查询监控数据,未来还将扩展LOOKUP JOIN等功能。企业用户现可升级至最新版体验这一统一数据分析解决方案。
2025-07-31 07:00:31
545
原创 在 Elasticsearch 8.19 和 9.1 中引入更强大、更具弹性和可观测性的 ES|QL
Elasticsearch 8.19和9.1版本发布,重点增强了ES|QL查询语言功能。主要更新包括:生产级LOOKUP JOIN功能正式可用,支持混合数值类型join和索引别名;查询引擎默认具备更强弹性,支持部分结果返回和自动重试;性能提升显著,优化了30多项操作;跨集群搜索(CCS)正式发布;新增可观测性功能如查询日志和实时监控API。此外还引入了LLM completion支持、新聚合函数等特性,帮助用户构建更强大的搜索解决方案。
2025-07-30 16:02:19
601
原创 Elasticsearch 8.19.0 和 9.1.0 中 LogsDB 和 TSDS 的性能与存储改进
Elasticsearch 8.19.0和9.1.0版本针对TSDS和LogsDB进行了多项性能优化。主要改进包括:通过移除恢复源数据将磁盘I/O降低50%;优化doc_values段合并使性能提升40%;改进数组处理减少重复存储;用跳表替代BKD树使_seq_no字段存储减少50%。这些改进使LogsDB存储效率提升最高达4倍,索引吞吐量损失控制在10%以内。升级后,用户能以更低成本高效管理海量日志和指标数据。
2025-07-30 09:46:07
566
原创 Elasticsearch 现在默认启用 BBQ,并通过 ACORN 实现过滤向量搜索
Elasticsearch 9.1推出两项向量搜索重大改进:新算法ACORN显著提升过滤向量搜索速度(典型场景5倍加速);BBQ量化方法在降低32倍内存占用的同时,基准测试显示其排序质量优于传统float32搜索。这些创新让开发者能在不牺牲质量的前提下,构建更快速、更低成本的AI搜索应用。用户升级至新版本即可自动获得这些优化功能。
2025-07-30 09:12:28
881
原创 人工智能是网络安全最大的威胁
摘要:AI正成为网络安全领域的关键力量,既是最大威胁也是最强防御。AI驱动的解决方案能提供实时威胁洞察,实现从被动防御到主动"反脆弱"的转变。生成式AI通过分析海量安全数据,帮助分析师快速处理事件并优化响应策略。自适应安全理念结合AI技术,使系统能动态应对变化威胁环境。Elastic开发的AI助手等工具正在重塑安全运营模式,将重复工作自动化,让专业人员专注于战略决策。虽然AI不会取代网络安全岗位,但已成为现代安全体系的基础要素,实现人机协同防御。
2025-07-29 16:50:33
554
原创 Elastic 劳动力的生成式 AI:ElasticGPT 的幕后解析
Elastic公司推出内部AI助手ElasticGPT,基于RAG框架构建,整合Elastic技术栈实现安全高效的智能问答。该系统核心是私有RAG模型SmartSource,通过Elasticsearch进行向量检索,结合OpenAI的GPT-4o模型生成响应。架构采用ElasticCloud部署,包含前端EUI框架、后端Elasticsearch存储和LangChain编排层,所有交互均受严格安全管控并记录分析。该平台既验证了Elastic的AI能力,也为客户提供了构建企业级生成式AI的参考范例,未来将持
2025-07-26 08:31:57
930
1
原创 LlamaIndex 和 Elasticsearch Rerankers:无与伦比的简洁
本文介绍了如何从LlamaIndex RankGPT reranker迁移到Elasticsearch内置的语义重排序器。作者通过笔记本电脑产品搜索场景,对比展示了两种重排序方法的应用效果。Elasticsearch提供了开箱即用的重排序功能,可直接集成到检索管道中,无需额外操作且具备可扩展性。文章详细演示了使用LlamaIndex RankGPT和Elastic semantic reranker的具体实现步骤,包括数据准备、索引创建、查询执行和结果对比。测试结果表明,两种方法都能有效提升搜索质量,将高端
2025-07-25 21:30:09
1177
2
原创 使用 Elastic Observability 监控 Proxmox VE 部署
本文介绍了如何利用Elastic Observability监控Proxmox VE虚拟化平台及其运行的Linux容器(LXC)和虚拟机(VM)。通过在Intel N100迷你电脑搭建的家庭实验室中部署Elastic Agent,将数据上报至Elastic Cloud进行集中监控。文中详细演示了Kibana的主机监控功能、火焰图分析以及Observability AI助手如何通过自然语言查询快速分析系统状态。此外,还指导了如何设置CPU负载告警规则,实现系统异常的主动发现。该方案为Proxmox VE环境提
2025-07-24 15:09:02
749
原创 分层解析:生成式 AI 和以知识为中心的服务如何简化客户支持
生成式AI与KCS正在重塑客户支持模式。传统分层支持模型因响应延迟、重复沟通导致客户体验不佳。通过整合知识库和非结构化数据,生成式AI能提供实时准确的答案,实现客户自助服务并减少工单量。支持团队可借助AI快速获取解决方案,专注于复杂问题。这种转变使支持从被动响应转向主动预防,同时提升工程师角色价值,将其从重复工作中解放出来,专注于战略咨询和复杂问题解决。Elastic开发的SupportAssistant正是这一理念的实践成果。
2025-07-23 16:01:35
1018
原创 制定一个可靠的生成式 AI 数据策略的 4 个步骤
生成式人工智能(GenAI)承诺通过自然语言输出来彻底改变组织及其团队。它承诺提供更快、更智能、更高效的技术,但却从未告诉你如何制定一个有效的策略来最大化 AI 的功能。生成式 AI 成功的关键在于一个能够将你的数据与业务优先级对齐的策略。虽然生成式 AI 的能力具有革命性,但真正的转变发生在数据、IT 和业务策略协同工作的情况下。没有以数据为中心的业务策略,即使是最先进的 AI 模型也可能无法为你的利润带来真正的价值。你最终只会拥有一堆表现不佳的工具。那么,如何确保你的企业能够充分利用生成式
2025-07-23 14:59:52
1027
原创 使用 FastAPI 构建 Elasticsearch API
本文介绍了如何使用Pydantic模式和FastAPI构建安全的Elasticsearch API层。主要内容包括:1)通过FastAPI创建中间API层来保护Elasticsearch集群,避免直接暴露查询逻辑;2)演示了数据准备过程,包括索引创建和数据导入;3)实现了基本的搜索功能,并通过Pydantic模型优化请求响应结构;4)利用FastAPI的后台任务功能处理长时间运行的删除操作。文章强调采用类型检查和有限参数控制来增强安全性,同时展示了FastAPI在简化API开发方面的优势。
2025-07-23 08:11:38
1724
原创 Elastic Cloud 简化版:GCP Marketplace
本文介绍了如何通过Google Cloud Marketplace快速部署Elasticsearch服务。主要内容包括:1) 使用Google Cloud账户订阅Elastic Cloud服务,实现集中计费管理;2) 简化的部署流程,3-5分钟即可完成生产级集群搭建;3) 三种部署方式比较,推荐使用Marketplace获得最简化的管理体验;4) 详细步骤说明,从订阅到创建部署再到API调用;5) 订阅管理和技术支持信息。该方案适合希望快速使用Elasticsearch而不想管理基础设施的用户。
2025-07-22 11:25:15
720
原创 Elasticsearch 是 NVIDIA Enterprise AI Factory 验证设计中推荐的向量数据库
Elastic与NVIDIA合作,将其向量数据库Elasticsearch集成到NVIDIA Enterprise AI Factory验证设计中,为企业提供本地AI解决方案框架。该合作重点优化AI模型部署、多模态数据提取和嵌入生成,并计划通过NVIDIA cuVS库实现GPU加速,提升向量索引构建和查询性能。Elasticsearch将利用GPU优化,进一步巩固其作为向量数据库的领先地位。此次合作建立在Elastic现有优化基础上,旨在支持实时AI应用开发。
2025-07-21 23:12:50
1003
原创 Elasticsearch 简化指南:GCP Google Compute Engine
本指南详细介绍了在Google Compute Engine上手动部署Elasticsearch和Kibana的完整流程。内容包括:创建GCP虚拟机实例、配置防火墙规则开放Kibana端口、通过SSH连接到实例、安装并验证Elasticsearch(包括安全证书生成)、安装配置Kibana实现可视化,以及最终通过浏览器访问Kibana仪表板。文章特别强调了生产环境需考虑的扩展配置,如多节点集群搭建和自动备份方案,为需要完全控制Elasticsearch环境的用户提供了GCP基础设施上的部署方案。
2025-07-20 15:49:52
818
原创 Elasticsearch 重命名索引
本文介绍了Elasticsearch中四种重命名索引的实用方法:别名(alias)、Clone API、快照/恢复和Reindex API。由于Elasticsearch的分布式架构不允许直接重命名索引,每种方法都有其适用场景:别名最轻量且实时生效,用于简单名称变更;Clone API通过硬链接快速复制索引;快照/恢复基于备份实现重命名;Reindex API最强大但资源消耗大,适合数据转换场景。文章详细说明了各方法的操作步骤、限制条件和最佳实践,帮助用户根据具体需求选择合适方案。
2025-07-19 08:36:10
1282
原创 AI 驱动的仪表板:从愿景到 Kibana
本文介绍了一种利用大语言模型(LLM)将手绘仪表板图像自动转换为Kibana仪表板的方法。作者通过提供Elasticsearch索引映射和可视化模板,让LLM分析图像内容并生成符合要求的JSON配置,再通过Kibana API创建完整仪表板。该方法解决了直接让LLM生成NDJSON格式时常见的格式错误问题,采用模板替换的方式提高了可靠性和扩展性。文章详细说明了实现步骤,包括数据准备、LLM配置、模板填充和仪表板创建等关键环节,并提供了一个可运行的Python应用示例。最后展示了生成仪表板的URL和ID,证明
2025-07-18 15:48:11
1328
原创 Elasticsearch:ES|QL 改进的时间线
ES|QL发展历程概览:Elasticsearch推出的ES|QL查询语言自8.11版本技术预览以来持续进化。8.12优化性能并支持空间数据,8.13引入异步查询和字符串处理函数。8.14正式发布后,新增分组统计和空间函数。8.15-8.17逐步完善类型转换、聚合分析和时间精度。8.18和9.0版本推出跨索引连接、全文评分和KQL集成等高级功能。每个版本都通过新增命令、函数和性能优化,不断提升数据处理能力,满足可观测性、安全性等多样化场景需求。
2025-07-18 14:15:34
775
原创 在 Windows 上使用 Docker 运行 Elastic Open Crawler
本文介绍了如何在Windows系统上通过Docker运行Elastic OpenCrawler的两种方法。虽然OpenCrawler没有官方Windows支持,但通过配置Docker环境仍可实现运行。文章详细说明了准备工作(安装Git、Docker Desktop等)、创建配置文件,并分别介绍了直接使用Docker镜像和通过docker-compose运行的具体步骤,特别强调了Windows路径格式与Unix路径格式的转换要点。最后,作者展示了成功运行后的日志输出,证明OpenCrawler可以在Windo
2025-07-17 10:38:27
1079
原创 Elastic 和腾讯云 AI 搜索技术让敦煌数字经藏对所有人开放
敦煌数字经藏中的古籍现在已实现在线全民可访问。敦煌研究院正式发布了数字经藏数据库,收录了超过 9,900 册敦煌文献和超过 60,700 张包含佛经、法律法规、合同、丝绸画等内容的图片。借助 Elastic 和腾讯云 AI 搜索及大型语言模型( LLM )技术,古籍中的繁体中文和罕见字符被“唤醒”,变得可搜索、可翻译,不再晦涩难懂。敦煌数字经藏将文明深入带入每个人的眼中。
2025-07-17 09:48:20
839
原创 Elasticsearch MCP 服务器现已在 AWS Marketplace 上提供
我们很高兴地宣布,Elasticsearch Model Context Protocol( MCP )服务器现已在 AWS Marketplace 上提供。被归类于 AI Tools and Agents 类别,确保客户可以轻松在 AWS 上发现并以容器方式部署 Elasticsearch MCP 服务器。无论你是在构建 AI 助理、智能代理,还是高级分析平台,Elastic 都能为其提供强大支撑。
2025-07-17 09:08:47
5901
1
原创 Elastic 被评为 2025 年 Gartner® 可观测平台魔力象限™中的领导者
摘要:Elastic连续第二年被评为Gartner可观测平台魔力象限领导者,其AI驱动的可观测性解决方案帮助客户从被动监控转向实时调查。关键优势包括:原生支持OpenTelemetry标准、AI助手实现自然语言分析、零配置AIOps自动检测异常、全新的ES|QL高级查询语言,以及可降低65%存储成本的logsdb技术。Elastic通过开放架构和AI创新,为复杂系统提供统一可视性和PB级数据处理能力,满足企业优化性能和控制成本的双重需求。
2025-07-12 09:52:37
1239
原创 上下文更长 ≠ 更好:为什么 RAG 仍然重要
摘要: 本文对比了RAG(检索增强生成)与直接使用长上下文LLM(如Gemini1.5)的优劣。实验表明,RAG在成本(低1250倍)、速度(1秒vs45秒)和准确性(100%正确率)上均优于全上下文LLM。后者因处理百万级tokens时易丢失重点且成本高昂,而RAG通过Elasticsearch的混合搜索(全文/语义/过滤)精准筛选信息,显著提升LLM回答质量。结论强调:大上下文模型虽适用于无过滤场景,但RAG仍是高效、经济的首选方案。(150字) 核心发现: 成本:RAG单次查询$0.00008,全LL
2025-07-12 09:24:21
1274
原创 安全领域的 AI 采用:主要用例和需避免的错误
AI在网络安全领域呈现双重影响:既提升防御能力又加剧威胁复杂性。文章探讨了AI改变安全运营的五大核心用例:威胁检测、SOC自动化、事件响应、欺诈分析和数据接入。同时指出实施AI时需避免的常见错误:治理不足、访问控制薄弱、数据隐私风险、过度依赖自动化等。建议组织采取数据质量优先、系统集成、人员培训等最佳实践,并强调ElasticSecurity平台如何将AI深度集成到安全分析流程中。文中特别提醒使用第三方AI工具时的数据安全风险,体现了对AI应用合规性的重视。
2025-07-11 14:31:22
1169
原创 使用 Maximum Marginal Relevance 实现搜索结果多样化
本文介绍了如何使用Elasticsearch和Python实现最大边际相关性(MMR)算法来优化搜索结果。传统搜索仅关注相关性,容易导致结果冗余(如10条相似的黑色裤子)。MMR通过平衡相关性和多样性,在迭代过程中选择既与查询相关又与已选结果差异化的内容。文章详细讲解了MMR算法原理、实现代码(包括向量搜索和重排序),并展示了在时尚产品搜索中的应用效果对比。最后指出MMR可广泛应用于电商、新闻、推荐系统等场景,通过调整λ参数满足不同需求,强调搜索不仅需要相关性,也需要多样性才能带来更好的用户体验。
2025-07-11 14:03:44
1262
原创 Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
摘要:Elasticsearch 8.19/9.1版本增强了semantic_text搜索功能,支持自定义分块设置和向量量化配置。用户现在可以灵活控制文本分块策略(基于句子/单词/禁用分块)和量化方法(如BBQ),以适应专业用例需求。这些改进使语义搜索既保持开箱即用的便捷性,又提供高级配置选项,同时兼容未来功能扩展。新特性已在Serverless环境中可用,即将登陆Stack托管的Elasticsearch。(149字)
2025-07-10 08:20:57
1084
原创 Elasticsearch 字符串包含子字符串:高级查询技巧
本文介绍了Elasticsearch中实现子字符串搜索的多种高级技术。主要内容包括:1)使用query_string、match_phrase和wildcard查询进行子字符串匹配;2)通过自定义分析器和n-gram分词器提升搜索准确性;3)ES|QL提供的LOCATE、MATCH等字符串处理函数;4)区间查询和跨度查询等高级匹配方法。文章对比了不同技术的适用场景,并指出前缀通配符可能影响性能等问题,为开发人员提供了全面的Elasticsearch子字符串搜索解决方案。
2025-07-09 09:04:47
1354
原创 Elasticsearch:使用 Significant Terms Aggregation 识别被盗信用卡的常见交易
使用 Significant Terms Aggregation 识别被盗信用卡的常见交易。
2025-07-08 12:04:52
617
原创 揭示独特模式:Elasticsearch 中 significant terms 聚合指南
摘要:Elasticsearch的significantterms聚合功能能够通过统计分析方法发现数据中非显而易见的有价值洞察。与普通terms聚合不同,它会比较子数据集与整体数据集的词项分布,识别出统计上显著异常的关联模式。文章通过手机销售数据分析的具体案例,展示了如何发现不同职业群体对iPhone16的独特偏好,以及如何结合语义搜索识别与"good performance"评价显著相关的机型。这种聚合方法在消费者行为分析、欺诈检测、质量评价等多个领域都有重要应用价值,能够揭示数据背后
2025-07-08 11:15:25
1177
原创 使用 collapse 和 cardinality 实现高效分页在 Elasticsearch 中
本文介绍了在Elasticsearch中使用collapse功能对产品变体进行分组时遇到的分页挑战。通过示例展示了如何将collapse与cardinality聚合结合使用,以获取真实的唯一分组数量,从而解决分页问题。文章指出,单独使用collapse时返回的hits.total.value反映的是原始文档数量而非分组后数量,会导致分页显示错误。解决方案是在collapse查询中添加针对相同字段的cardinality聚合,准确计算唯一值数量,实现可靠分页。这种方法特别适用于电商等需要展示产品变体的场景。
2025-07-05 09:47:11
1034
原创 APM 最佳实践:从业者指南中的注意事项与禁忌
《高效应用性能管理(APM)实践指南》摘要 应用性能管理(APM)是现代软件系统维护的关键实践,通过持续监控应用程序的前后端性能,确保业务连续性和用户体验。本文系统性地阐述了APM的核心原则、实施策略和最佳实践。 核心要点包括: 现代APM需整合追踪(traces)、指标(metrics)和日志(logs)三类数据,采用自动检测与关键业务手动检测相结合的方案; 有效策略应包含性能监控、错误跟踪、基础设施监控和用户体验指标四个维度; 实施时应遵循端到端可见性、实时监控、以用户为中心等原则,避免过度检测(建议控
2025-07-04 10:40:19
698
原创 Elasticsearch:异常检测入门
本文介绍了在Elastic Stack 9.0.2中使用机器学习进行异常检测的实践方法。通过Kibana自带的示例数据,展示了如何创建三种不同类型的异常检测作业:单指标作业、多指标作业和群体作业。文章详细讲解了数据探索、作业配置、结果分析等关键步骤,并演示了如何使用SingleMetricViewer和AnomalyExplorer工具查看检测结果。此外,还介绍了利用机器学习模型进行未来行为预测的方法。整个过程突出了机器学习在运维场景中的价值,能够自动识别异常事件,减轻人工监控负担,帮助运维人员提前发现潜在
2025-07-03 15:26:16
772
原创 祝贺我们首批通过 Elastic 认证的生成式 AI 销售合作伙伴
摘要:Elastic推出生成式AI合作伙伴认证计划,首批认证的合作伙伴包括GIOS、KPMG等6家欧洲和中东企业。这些合作伙伴已完成严格的ElasticAI培训,具备开发RAG解决方案等能力。Elastic通过向量数据库和AI集成,简化企业AI应用开发流程。认证合作伙伴将帮助客户克服AI试点到规模化应用的挑战,提供专业技术支持和创新方案。Elastic强调合作伙伴在推动AI解决方案落地中的关键作用,同时提醒用户注意第三方AI工具的数据安全风险。(149字)
2025-07-02 15:11:33
973
原创 使用 JavaScript、Mastra 和 Elasticsearch 构建一个具备代理能力的 RAG 助手
在这篇文章中,我们将探索如何使用 Mastra 和一个轻量级的 JavaScript Web 应用来构建一个具备代理能力的 RAG 助手,并与它进行交互。通过将这个代理连接到 Elasticsearch,我们为它提供了访问结构化球员数据的能力,并能执行实时统计聚合,从而为你提供基于球员数据的推荐。前往 GitHub 仓库查看详情;README 文件提供了如何克隆并在本地运行该应用的说明。
2025-07-02 14:45:22
1302
原创 Elastic 构建 Elastic Cloud Serverless 的历程
摘要:Elastic团队分享了构建Elastic Cloud Serverless无服务器平台的经验。该平台通过云原生架构重构,将Elastic Stack从有状态系统转变为按需扩展的无服务器服务,利用对象存储替代本地磁盘,并采用Kubernetes实现跨云部署。文章详细介绍了架构演进、性能优化、自动扩缩容机制和定价模型设计,强调通过解耦搜索/索引层、减少API调用等技术突破,在AWS/GCP/Azure三大云上实现了高可用性。平台采用细胞式架构确保韧性,并通过统一控制平面管理分布式资源,最终实现了运维简化
2025-07-01 11:06:36
694
01 - AI 驱动 - 搜索的未来 -刘晓国 武汉 20250329
2025-03-31
02-GraphRAG 和 Elasticseach 8 的创新实践 - 徐胜 上海 20250222
2025-03-03
01-AI 驱动 - 搜索的未来 - 刘晓国 上海 20250222
2025-03-03
04-Elasticsearch 在 AI 驱动下的检索新特性 - 槐新 上海 20250222
2025-03-03
03-基于 ES 与 LLM 技术构建 B站大数据运维智能体实践 - 张勋祥 上海 20250222
2025-03-03
03-Elasticsearch 在 AI 检索与 Serverless 模式成本优化的新特性 王亚宁 北京 20241214
2024-12-17
01-AI 驱动 - 搜索的未来 刘晓国 北京 20241214
2024-12-16
04 - 降本增效的利器,认识一个不同的 Elastic 顾鹏飞 北京 20241214
2024-12-16
02-Kibana 构建高级可视化 包春喜 北京 20241214
2024-12-16
02-Elasticsearch 8.x 向量搜索使用详解 杭州 1.6 2024
2024-12-10
高管指南:如何将生成式AI融入运营
2024-12-05
Elastic帮助企业发挥数据的作用
2024-12-05
Elastic最新产品及解决方案
2024-12-05
02-ES-小工具撬动大杠杆- 日常高效运维 Elastic - 尚雷 线上 20241128
2024-11-29
01-Elastic 向量搜索及 构建 RAG 应用 - 刘晓国 线上 20241128
2024-11-29
05-Elastic Stack 在企业安全运营中的实践和探索- 余锡琨 成都 20240921
2024-09-29
04-腾讯云ES AI增强与向量检索特性介绍 - 陈月望 成都 20240921
2024-09-29
01-Elasticsearch 简单而高效的管道查询语言- ESQL刘晓国 成都 20240921
2024-09-29
02-kibana 创建高级可视化 - 包春喜 成都 20240921
2024-09-29
02- Elastic Meetup-如何系统化的备战 Elastic认证专家考试 - 铭毅天下 线上 20240918
2024-09-18
04-Elasticsearch 在日志系统的应用 石樊 深圳 20250727
2025-07-30
Elasticsearch 可搜索快照 - 降本增效的实践与探索 线上 夏乔 20250717
2025-07-18
【大数据知识库】基于Qwen2.5-14B与Elasticsearch的智能问答系统设计:传统检索与向量检索对比及RAG架构应用
2025-07-10
【AIOps领域】基于M02-双 MCP 赋能ES Luke 南京 20250628CP框架的Elasticsearch与Kibana智能根因分析系统设计:提升企业数据洞察效率和自动化运维能力
2025-06-28
03-Elasticsearch 数据流转之道 - 从写入到查询的技术探秘 尚雷.南京 20250628
2025-06-28
04-ES日志集群大规模迁移实践-李猛-南京-20250618
2025-06-28
腾讯云 ES AI 搜索优化实践 刘忠奇 线上 20250605
2025-06-05
ES/Ksibana 双MCP框架下的新一代AiOps实践 Luke 线上 20250521
2025-05-22
03-Elasticsearch跨境电商搜索优化实践 欧阳楚才 杭州 20250419
2025-04-19
02-阿里云Elasticsearch向量引擎百亿级数据优化实践 魏子珺 杭州 20250419
2025-04-19
05-ES AI Assistant集成 DeepSeek QwQ,搭建智能运维助手 槐新 杭州 20250419与应用场景演示
2025-04-19
04-Higress x Elasticsearch构建更智能的AI网关 程治玮 20250419
2025-04-19
00-Elastic Pioneer-项目
2025-04-19
Elasticsearch 8.17 Logsdb:企业降本增效利器 程地华 线上 20250416
2025-04-17
04 - 腾讯云 ES AI 搜索优化实践 - 刘忠奇 武汉 20250329
2025-03-31
02 - ES 在绿盟企业安全平台的应用实践 - 陆攀 武汉 20250329
2025-03-31
05 -Elasticsearch 存算分离架构在小米的应用实践 - 周明裕 郑钧元 武汉 20250329
2025-03-31
03 - Agentic RAG 构建之路 - 李捷 武汉 20250329
2025-03-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人