字符串 Hash 函数对比
重新整理了一下几个字符串 hash 函数,使用了模板,使其支持宽字符串,代码如下:
// @brief BKDR Hash Function
// @detail 本算法由于在Brian Kernighan与Dennis Ritchie的《The C Programming Language》一书被展示而得名,是一种简单快捷的hash算法,也是Java目前采用的字符串的Hash算法(累乘因子为31)
template<class T>
size_t BKDRHash(const T *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = hash * 131 + ch; // 也可以乘以31、131、1313、13131、131313..
// 有人说将乘法分解为位运算及加减法可以提高效率,如将上式表达为:hash = hash << 7 + hash << 1 + hash + ch;
// 但其实在Intel平台上,CPU内部对二者的处理效率都是差不多的
// 分别进行了100亿次的上述两种运算,发现二者时间差距基本为0(如果是Debug版,分解成位运算后的耗时还要高1/3)
// 在ARM这类RISC系统上没有测试过,由于ARM内部使用Booth's Algorithm来模拟32位整数乘法运算,它的效率与乘数有关:
// 当乘数8-31位都为1或0时,需要1个时钟周期
// 当乘数16-31位都为1或0时,需要2个时钟周期
// 当乘数24-31位都为1或0时,需要3个时钟周期
// 否则,需要4个时钟周期
}
return hash;
}
/// @brief SDBM Hash Function
/// @detail 本算法是由于在开源项目SDBM(一种简单的数据库引擎)中被应用而得名,它与BKDRHash思想一致,只是种子不同而已
template<class T>
size_t SDBMHash(const T *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = 65599 * hash + ch;
//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
// @brief RS Hash Function
// @detail 因Robert Sedgwicks在其《Algorithms in C》一书中展示而得名
template<class T>
size_t RSHash(const T *str)
{
register size_t hash = 0;
size_t magic = 63689;
while (size_t ch = (size_t)*str++)
{
hash = hash * magic + ch;
magic *= 378551;
}
return hash;
}
// @brief AP Hash Function
// @detail 由Arash Partow发明的一种hash算法
template<class T>
size_t APHash(const T *str)
{
register size_t hash = 0;
size_t ch;
for (long i = 0; ch = (size_t)*str++; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
}
}
return hash;
}
// @brief JS Hash Function
// 由Justin Sobel发明的一种hash算法
template<class T>
size_t JSHash(const T *str)
{
if(!*str) // 以保证空字符串返回哈希值0
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash ^= ((hash << 5) + ch + (hash >> 2));
}
return hash;
}
// @brief DEK Function
// @detail 本算法是由于Donald E. Knuth在《Art Of Computer Programming Volume 3》中展示而得名
template<class T>
size_t DEKHash(const T* str)
{
if(!*str) // 保证空字符串返回哈希值0
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash = ((hash << 5) ^ (hash >> 27)) ^ ch;
}
return hash;
}
// @brief FNV Hash Function
// @detail Unix system系统中使用的一种著名hash算法,后来微软也在其hash_map中实现
template<class T>
size_t FNVHash(const T* str)
{
if(!*str) // 保证空字符串返回哈希值0
return 0;
register size_t hash = 2166136261;
while (size_t ch = (size_t)*str++)
{
hash *= 16777619;
hash ^= ch;
}
return hash;
}
// @brief DJB Hash Function
// @detail 由Daniel J. Bernstein教授发明的一种hash算法
template<class T>
size_t DJBHash(const T *str)
{
if(!*str) // 保证空字符串返回哈希值0
return 0;
register size_t hash = 5381;
while (size_t ch = (size_t)*str++)
{
hash += (hash << 5) + ch;
}
return hash;
}
// @brief DJB Hash Function 2
// @detail 由Daniel J. Bernstein 发明的另一种hash算法
template<class T>
size_t DJB2Hash(const T *str)
{
if(!*str) // 保证空字符串返回哈希值0
return 0;
register size_t hash = 5381;
while (size_t ch = (size_t)*str++)
{
hash = hash * 33 ^ ch;
}
return hash;
}
// @brief PJW Hash Function
// @detail 本算法是基于AT&T贝尔实验室的Peter J. Weinberger的论文而发明的一种hash算法
template<class T>
size_t PJWHash(const T *str)
{
static const size_t TotalBits = sizeof(size_t) * 8;
static const size_t ThreeQuarters = (TotalBits * 3) / 4;
static const size_t OneEighth = TotalBits / 8;
static const size_t HighBits = ((size_t)-1) << (TotalBits - OneEighth);
register size_t hash = 0;
size_t magic = 0;
while (size_t ch = (size_t)*str++)
{
hash = (hash << OneEighth) + ch;
if ((magic = hash & HighBits) != 0)
{
hash = ((hash ^ (magic >> ThreeQuarters)) & (~HighBits));
}
}
return hash;
}
// @brief ELF Hash Function
// @detail 由于在Unix的Extended Library Function被附带而得名的一种hash算法,它其实就是PJW Hash的变形
template<class T>
size_t ELFHash(const T *str)
{
static const size_t TotalBits = sizeof(size_t) * 8;
static const size_t ThreeQuarters = (TotalBits * 3) / 4;
static const size_t OneEighth = TotalBits / 8;
static const size_t HighBits = ((size_t)-1) << (TotalBits - OneEighth);
register size_t hash = 0;
size_t magic = 0;
while (size_t ch = (size_t)*str++)
{
hash = (hash << OneEighth) + ch;
if ((magic = hash & HighBits) != 0)
{
hash ^= (magic >> ThreeQuarters);
hash &= ~magic;
}
}
return hash;
}
对这些hash的散列质量及效率作了一个简单测试,测试结果如下:
测试 1:对 100000 个由大小写字母与数字随机的 ANSI 字符串(无重复,每个字符串最大长度不超过 64 字符)进行散列:
测试 2:对 100000 个由任意 UNICODE 组成随机字符串(无重复,每个字符串最大长度不超过 64 字符)进行散列:
测试 3:对 1000000 个随机 ANSI 字符串(无重复,每个字符串最大长度不超过 64 字符)进行散列:
结论:也许是样本存在一些特殊性,在对 ASCII 码字符串进行散列时,PJW 与 ELF Hash(它们其实是同一种算法)无论是质量还是效率,都相当糟糕。例如:"b5"与“aE" 这两个字符串按照 PJW 散列出来的 hash 值就是一样的。另外,其它几种依靠异或来散列的哈希函数,如:JS / DEK / DJB Hash,在对字母与数字组成的字符串的散列效果也不怎么好。相对而言,还是 BKDR 与 SDBM 这类简单的 Hash 效率与效果更好。
各种字符串 Hash 函数比较
常用的字符串 Hash 函数还有 ELFHash,APHash 等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生影响。另外还有以 MD5 和 SHA1 为代表的杂凑函数,这些函数几乎不可能找到碰撞。
常用字符串哈希函数有 BKDRHash、APHash、DJBHash、JSHash、RSHash、SDBMHash、PJWHash、ELFHash 等等。对于以上几种哈希函数进行了一个小小的评测。
其中数据 1 为 100000 个字母和数字组成的随机串哈希冲突个数。数据 2 为 100000 个有意义的英文句子哈希冲突个数。数据 3 为数据 1 的哈希值与 1000003(大素数)求模后存储到线性表中冲突的个数。数据 4 为数据 1 的哈希值与 10000019(更大素数)求模后存储到线性表中冲突的个数。
经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash 无论是在实际效果还是编码实现中,效果都是最突出的。APHash 也是较为优秀的算法。DJBHash,JSHash,RSHash与 SDBMHash 各有千秋。PJWHash 与 ELFHash 效果最差,但得分相似,其算法本质是相似的。
unsigned int SDBMHash(char *str)
{
unsigned int hash = 0;
while (*str)
{
// equivalent to: hash = 65599*hash + (*str++);
hash = (*str++) + (hash << 6) + (hash << 16) - hash;
}
return (hash & 0x7FFFFFFF);
}
// RS Hash Function
unsigned int RSHash(char *str)
{
unsigned int b = 378551;
unsigned int a = 63689;
unsigned int hash = 0;
while (*str)
{
hash = hash * a + (*str++);
a *= b;
}
return (hash & 0x7FFFFFFF);
}
// JS Hash Function
unsigned int JSHash(char *str)
{
unsigned int hash = 1315423911;
while (*str)
{
hash ^= ((hash << 5) + (*str++) + (hash >> 2));
}
return (hash & 0x7FFFFFFF);
}
// P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
unsigned int ThreeQuarters = (unsigned int)((BitsInUnignedInt * 3) / 4);
unsigned int OneEighth = (unsigned int)(BitsInUnignedInt / 8);
unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
unsigned int hash = 0;
unsigned int test = 0;
while (*str)
{
hash = (hash << OneEighth) + (*str++);
if ((test = hash & HighBits) != 0)
{
hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
}
}
return (hash & 0x7FFFFFFF);
}
// ELF Hash Function
unsigned int ELFHash(char *str)
{
unsigned int hash = 0;
unsigned int x = 0;
while (*str)
{
hash = (hash << 4) + (*str++);
if ((x = hash & 0xF0000000L) != 0)
{
hash ^= (x >> 24);
hash &= ~x;
}
}
return (hash & 0x7FFFFFFF);
}
// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
unsigned int hash = 0;
while (*str)
{
hash = hash * seed + (*str++);
}
return (hash & 0x7FFFFFFF);
}
// DJB Hash Function
unsigned int DJBHash(char *str)
{
unsigned int hash = 5381;
while (*str)
{
hash += (hash << 5) + (*str++);
}
return (hash & 0x7FFFFFFF);
}
// AP Hash Function
unsigned int APHash(char *str)
{
unsigned int hash = 0;
int i;
for (i=0; *str; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
}
}
return (hash & 0x7FFFFFFF);
}