pytorch中的torch.manual_seed(myseed) 和 torch.cuda.manual_seed(myseed)

本文介绍了在PyTorch中如何通过torch.manual_seed()和torch.cuda.manual_seed()设置CPU和GPU的随机种子,以确保实验的可复现性。通过设定种子,可以保证每次运行时生成相同的随机数序列,方便实验对比和分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

myseed = 45216
使用方法:
为CPU中设置种子,生成随机数
torch.manual_seed(myseed)
为特定GPU设置种子,生成随机数
torch.cuda.manual_seed(myseed)
为所有GPU设置种子,生成随机数
torch.cuda.manual_seed_all(myseed)
解释:
在实验中需要生成随机数据的时候,每次实验都需要生成数据。设置随机种子是为了确保每次生成固定的随机数,这就使得每次实验结果显示一致了,有利于实验的比较和改进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识浅谈

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值