
SSProve: A foundational framework for modular
cryptographic proofs in Coq

PHILIPP G. HASELWARTER, Aarhus University, Denmark

EXEQUIEL RIVAS, Tallinn University of Technology, Estonia

ANTOINE VAN MUYLDER, KU Leuven, Belgium

THÉO WINTERHALTER,MPI-SP, Germany

CARMINE ABATE,MPI-SP, Germany

NIKOLAJ SIDORENCO, Aarhus University, Denmark

CĂTĂLIN HRIT,CU,MPI-SP, Germany

KENJI MAILLARD, Inria Rennes, France
BAS SPITTERS, Aarhus University, Denmark

State-separating proofs (SSP) is a recent methodology for structuring game-based cryptographic proofs in a

modular way, by using algebraic laws to exploit the modular structure of composed protocols. While promising,

this methodology was previously not fully formalized and came with little tool support. We address this by

introducing SSProve, the first general verification framework for machine-checked state-separating proofs.

SSProve combines high-level modular proofs about composed protocols, as proposed in SSP, with a probabilistic

relational program logic for formalizing the lower-level details, which together enable constructing machine-

checked cryptographic proofs in the Coq proof assistant. Moreover, SSProve is itself fully formalized in Coq,

including the algebraic laws of SSP, the soundness of the program logic, and the connection between these

two verification styles.

To illustrate SSProve we use it to mechanize the simple security proofs of ElGamal and PRF-based encryption.

We also validate the SSProve approach by conducting two more substantial case studies: First, we mechanize

an SSP security proof of the KEM-DEM public key encryption scheme, which led to the discovery of an error

in the original paper proof that has since been fixed. Second, we use SSProve to formally prove security of

the sigma-protocol zero-knowledge construction, and we moreover construct a commitment scheme from a

sigma-protocol to compare with a similar development in CryptHOL. We instantiate the security proof for

sigma-protocols to give concrete security bounds for Schnorr’s sigma-protocol.

CCS Concepts: • Theory of computation → Logic and verification; Programming logic; Categorical
semantics; Invariants; Pre- and post-conditions; Program verification; Probabilistic computation; • Security
and privacy→ Cryptography; Formal methods and theory of security; Logic and verification;

Additional Key Words and Phrases: high-assurance cryptography, game-based proofs, state-separating proofs,

modular proofs, machine-checked proofs, probabilistic relational program logic, formal verification

1 INTRODUCTION
Cryptographic proofs can be challenging to make fully precise and to rigorously check. This

has caused a “crisis of rigor” [30] in cryptography that Shoup [89], Bellare and Rogaway [30],

Halevi [59], and others, proposed to address by systematically structuring proofs as sequences

Authors’ addresses: Philipp G. Haselwarter, philipp@haselwarter.org, Aarhus University, Aarhus, Denmark; Exe-

quiel Rivas, erivas@dcc.fceia.unr.edu.ar, Tallinn University of Technology, Tallinn, Estonia; Antoine Van Muylder,

antoine.vanmuylder@kuleuven.be, KU Leuven, Brussels, Belgium; Théo Winterhalter, theo.winterhalter@mpi-sp.
org, MPI-SP, Bochum, Germany; Carmine Abate, carmine.abate@mpi-sp.org, MPI-SP, Bochum, Germany; Nikolaj

Sidorenco, sidorenco@cs.au.dk, Aarhus University, Aarhus, Denmark; Cătălin Hrit,cu, catalin.hritcu@mpi-sp.org,
MPI-SP, Bochum, Germany; Kenji Maillard, kenji.maillard@inria.fr, Inria Rennes, Nantes, France; Bas Spitters,

spitters@cs.au.dk, Aarhus University, Aarhus, Denmark.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0003-0198-7751
HTTPS://ORCID.ORG/0000-0002-2114-624X
HTTPS://ORCID.ORG/0000-0003-4144-9368
HTTPS://ORCID.ORG/0000-0002-9881-3696
HTTPS://ORCID.ORG/0000-0001-8562-8750
HTTPS://ORCID.ORG/0000-0002-5092-2172
HTTPS://ORCID.ORG/0000-0001-8919-8081
HTTPS://ORCID.ORG/0000-0001-5554-3203
HTTPS://ORCID.ORG/0000-0002-2802-0973
https://orcid.org/0000-0003-0198-7751
https://orcid.org/0000-0002-2114-624X
https://orcid.org/0000-0002-2114-624X
https://orcid.org/0000-0003-4144-9368
https://orcid.org/0000-0002-9881-3696
https://orcid.org/0000-0001-8562-8750
https://orcid.org/0000-0002-5092-2172
https://orcid.org/0000-0002-5092-2172
https://orcid.org/0000-0001-8919-8081
https://orcid.org/0000-0001-5554-3203
https://orcid.org/0000-0002-2802-0973
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

2 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

of games. This game-based proof methodology is not only ubiquitous in provable cryptography

nowadays, but also amenable to full machine-checking in proof assistants such as Coq [26, 78]

and Isabelle/HOL [27]. It has also led to the development of specialized proof assistants [21, 35]

and automated verification tools for cryptographic proofs [19, 25, 35]. There are two key ideas

behind these tools: (i) formally representing games and the adversaries against them as code in a

probabilistic programming language, and (ii) using program verification techniques to conduct all

game transformation steps in a machine-checked manner.

For a long time however, game-based proofs have lacked modularity, which made them hard

to scale to large, composed protocols such as TLS [83] or the upcoming MLS [17]. To address this

issue, Brzuska et al. [40] have recently introduced state-separating proofs (SSP), a methodology

for modular game-based proofs, inspired by the paper proofs in the miTLS project [33, 34, 55], by

prior compositional cryptography frameworks [43, 71, 72], and by process algebras [74]. In the SSP

methodology, the code of cryptographic games is split into packages, which are modules made up

of procedures sharing state. Packages can call each other’s procedures (also known as oracles) and

can operate on their own state, and adversarial packages in particular cannot directly access other

packages’ state. Packages have natural notions of sequential and parallel composition that satisfy

simple algebraic laws, such as associativity of sequential composition. This law is used to define

cryptographic reductions not only in SSP, but also in the The Joy of Cryptography textbook [86],

which teaches cryptographic proofs in a style very similar to SSP.

While the SSP methodology is promising, and has for instance been recently used for proofs of the

TLS 1.3 Key Schedule [39] and of the MLS draft standard [38], the lack of a complete formalization

made SSP only usable for informal paper proofs, not for machine-checked ones. The SSP paper [40]

defines package composition and the syntax of a cryptographic pseudocode language for games and

adversaries, but the semantics of this language is not formally defined, and for instance the meaning

of their assert operator is neither explained nor self-evident, given the probabilistic setting and the

different possible choices, which can affect the meaning of cryptographic security definitions [29].

Moreover, while SSP provides a good way to structure proofs at the high-level, using algebraic

laws such as associativity, the low-level details of such proofs are usually treated very casually on

paper. Yet none of the existing cryptographic verification tools that could help machine-check these

low-level details supports the high-level part of SSP proofs: equational reasoning about composed

packages (i.e., modules) is either not possible at all [26, 59, 78, 95], or does not exactly match the

SSP package abstraction [21, 67] (see §8 for a comparison with this related work).

The main contribution of this work is to introduce SSProve, the first general verification frame-

work for machine-checked state-separating proofs. SSProve brings together two different proof

styles into a single unified framework: (1) high-level proofs are modular, done by reasoning equa-

tionally about composed packages, as proposed in SSP [40]; (2) low-level details are formally proved

in a probabilistic relational program logic [21, 26, 78]. Importantly, we show a formal connection

between these two proof styles in Theorem 2.4.

SSProve is a foundational framework, fully formalized in Coq. To achieve this, we define the

syntax of cryptographic pseudocode in terms of a free monad, in which external calls are represented

as algebraic operations [79]. This gives us a principled way to define sequential composition of

packages based on an algebraic effect handler [81] and to give machine-checked proofs of the SSP

package laws [40], some of which were treated informally on paper. We formalize the state of

SSP packages in terms of a shared global memory and make precise the minimal state-separation

requirements, by only requiring disjoint state between adversaries and the games with which they

are composed.

Beyond syntax, we also give a denotational semantics to cryptographic code in terms of stateful

probabilistic functions that can signal assertion failures by sampling from the empty probability

SSProve: A foundational framework for modular cryptographic proofs in Coq 3

subdistribution. Finally, we prove the soundness of a probabilistic relational program logic for

deriving properties about pairs of cryptographic code fragments.

For this soundness proof we build a semantic model based on relational weakest-precondition

specifications. Our model is modular with respect to the considered side-effects (currently probabili-

ties, state, and assertion failures). To obtain it, we follow a general recipe by Maillard et al. [70], who

recently proposed to characterize such semantic models as relative monad morphisms, mapping

two monadic computations to their canonical relational specification. This allows us to first define

a relative monad morphism for probabilistic, potentially failing computations and then to extend

this to state by applying a relative monad transformer. Working out this instance of Maillard

et al.’s [70] recipe involved formalizing various non-standard categorical constructs in Coq, in

an order-enriched context: lax functors, lax natural transformations, left relative adjunctions, lax

morphisms between such adjunctions, state transformations of such adjunctions, etc. This formal-

ization is of independent interest and could also allow one to more easily add extra side-effects and

F
★
-style sub-effecting [95] to SSProve in the future.

We formalize several security proofs, starting with the simple illustrative example of PRF-based

encryption of Brzuska et al. [40], followed by a security proof for ElGamal public key encryption

inspired by The Joy of Cryptography textbook [86, Chapter 15.3]. We then put SSProve to the test

by formalizing two, more interesting case studies: First, we mechanize the security proof of the

KEM-DEM public key encryption scheme of Cramer and Shoup [48], which Brzuska et al. [40]

used to illustrate the main ideas of SSP. The proof extensively uses the package laws of SSP and

showcases formal reasoning with invariants. Second, we give a new proof of security of Σ-protocols
in SSP style, and show how any Σ-protocol can be used to construct a commitment scheme, which

allows us to compare with a similar development in CryptHOL [42]. We instantiate the general

security proof for Σ-protocols to the concrete example of Schnorr’s Σ-protocol [87] to derive

concrete security bounds.

We have already started to reap the benefits of mechanizing SSP in a proof assistant: our

mechanization of the KEM-DEM proof of Brzuska et al. [40] has led us to find—in conjunction with

Brzuska et al.—an error in their originally published paper proof. Brzuska et al. have since proposed

a revised version of their theorem and proof, which we have adapted and fully mechanized in

SSProve. In turn, Markulf Kohlweiss has alerted us about a weakness in the security definition of

public-key encryption schemes used in the conference version of the current paper [1], which we

quickly fixed as discussed in §2.4. This demonstrates that the language of SSProve is comprehensible

to independent experts, who can review security definitions.

Outline. The remainder of this paper is structured as follows. §2 illustrates the key ideas of how

to use SSProve on two simple cryptographic proofs, showing semantic security of PRF-based and

ElGamal encryption. In §3 we formalize the SSP methodology: cryptographic pseudocode, packages,

sequential and parallel composition, and the algebraic laws they satisfy. In §4 we introduce the

rules of a probabilistic relational program logic and use them to prove Theorem 2.4, which formally

connects SSP to this program logic. In §5 we outline the effect-modular semantic model we use to

prove the soundness of the program logic. In §6 we present a first larger case study, formalizing

security of the KEM-DEM public key encryption scheme of Cramer and Shoup [48], following

the proof of Brzuska et al. [40]. In §7 we present the formalization of Σ-protocols in SSProve as a

second case study. Finally, §8 discusses related work and §9 future directions.

The full formalization of SSProve and of the examples from this paper (circa 24K lines of Coq

code including comments) are available under the MIT open source license at the following URL:

https://github.com/SSProve/ssprove/tree/journal-version

https://github.com/SSProve/ssprove/tree/journal-version

4 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

P
X

Z

Y

Fig. 1. Package 𝑃

package: 𝑃

mem: n : nat

X(b):

if b then

return 1

else

return Z(n)

Y():

n ← n + 1

Fig. 2. Possible pseudocode implementation for 𝑃

Remark. A previous version [1] of the present paper has been published at CSF 2021. The

improvements we made throughout the text are too many to list exhaustively. At a high level we:

(i) corrected the ElGamal security definition in §2.4; (ii) expanded the explanation of the logical

rules in §4 and added new rules for assertions, one-sided memory accesses, and state invariants;

(iii) significantly expanded the semantics section to be more self-contained and accessible, and to

draw connections to related approaches (§5); (iv) added Sections 6 and 7 presenting two new case

studies; and (v) improved and expanded the related work section (§8). The paper has also gained a

new author, and the author order has also slightly changed.

2 USING SSPROVE: KEY IDEAS AND EXAMPLES
Formalizing the SSP methodology for high-level proofs allows us to formally link it to the method-

ology of probabilistic relational program logics for low-level proofs. In this section, we begin

with a brief introduction to SSP (§2.1). Then, we present our new theorem connecting SSP to a

probabilistic relational program logic (§2.2). Finally, by way of two examples, we show how the

two methodologies are used together to obtain machine-checked security proofs. The first example

looks at a symmetric encryption scheme built out of a pseudo-random function (§2.3), while the

second looks at ElGamal, a popular asymmetric encryption scheme (§2.4).

2.1 An introduction to SSP
We begin by introducing our variant of the SSPmethodology of Brzuska et al. [40]. The main concept

behind this methodology is the package, which is a collection of procedure implementations that

together manipulate a common piece of state, and that may depend on a set of external procedures.

We refer to the set of external procedures on which the package can depend as the imports of the
package. In Figure 1, we can see a high-level picture of a package 𝑃 : it implements and exports
the procedures X and Y, and it imports the external procedure Z. The arrows indicate the direction
of calls, i.e., exports that can be called from the outside point towards P and imports point away.

We use import(𝑃) to denote the set of procedure names the package 𝑃 imports, and export(𝑃)
to denote the names of the procedures it exports. The term interface is used to refer to such a set

of procedure names.
1
While the import and export interfaces of a package tell us where it can be

used, in the SSP papers, the package implementations are usually given in separate figures, which

describe, in pseudocode, each of the procedures exported by the package. For example, a possible

pseudocode implementation corresponding to the package 𝑃 can be found in Figure 2. We refer to

the code of the procedure X exported by package 𝑃 as 𝑃 .X.

1
In SSProve the procedure names within interfaces are also associated with argument and result types, but we omit this

detail until §3.1.

SSProve: A foundational framework for modular cryptographic proofs in Coq 5

P2⋮

P1⋮

⋮

⋮

(a) Parallel composition

⋮

(b) Identity package

P2P1⋮ ⋮⋮

(c) Sequential composition

Fig. 3. Graphical representation of packages

In Figure 2, we can also see that the package implementation also depends on some memory

location n, which can be read and updated as shown in procedures X and Y respectively. In SSP, such

memory cells are implicitly initialized to default values depending on their type; here initially n = 0.
In SSProve memory locations refer to a shared global memory and the declaration “mem: n : nat”

in package 𝑃 should be understood as: n is the only global memory location that is used by the

procedures of 𝑃 .

Package algebra. Packages can be combined as algebraic objects. We can build complex packages

out of simpler ones using the following composition operations:

• Sequential composition: given two packages 𝑃1 and 𝑃2 with import(𝑃1) ⊆ export(𝑃2), then
𝑃1 ◦ 𝑃2 is obtained by inlining procedure definitions, each time 𝑃1 calls a procedure in 𝑃2.

• Parallel composition: given 𝑃1 and 𝑃2 such that export(𝑃1) and export(𝑃2) are disjoint,
then 𝑃1 ∥ 𝑃2 is the union of 𝑃1 and 𝑃2—it exports the procedures from both 𝑃1 and 𝑃2.

• Identity package: given an interface 𝐼 , we have a package that simply forwards all calls in

this interface. We refer to it as the identity package on the interface 𝐼 , written ID𝐼 , and we

have that import(ID𝐼) = export(ID𝐼) = 𝐼 .
In SSProve sequential and parallel composition are defined even in cases in which the composed

packages use the same global memory locations, which allows state sharing.

These operations have graphical counterparts which we show in Figure 3: parallel composition

(Figure 3a) is represented by stacking packages on top of each other; sequential composition

(Figure 3c) is obtained by merging the input arrows of one of the packages with the output

arrows of the other; finally the identity package (Figure 3b) is essentially silent when represented

graphically, its presence being notified by longer arrows. Moreover, there are natural algebraic laws

that hold between these operators. For example, sequential composition is an associative operator,

which formally we can state by the following equation:

𝑃1 ◦ (𝑃2 ◦ 𝑃3)
code≡ (𝑃1 ◦ 𝑃2) ◦ 𝑃3 (1)

Graphically these laws are obtained by simply forgetting about the dashed boxes (which represent

parenthesizing) and by stretching arrows. In the SSP methodology, the

code≡ symbol stands for code

equality between the packages: two packages are equal if the implementations of their procedures

are equal to each other. As in SSProve code equality corresponds precisely to syntactic equality

(including using the same global memory locations), we will write 𝑃 = 𝑄 instead of 𝑃
code≡ 𝑄 in the

6 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

remainder of the paper. The aforementioned algebraic package laws (see subsection 3.4 for details)

are convenient for cryptographic proofs, since they allow the compositional structure of a package

to be manipulated without having to look at all at the implementation of its procedures.

Games and distinguishers. A package with no imports is called a game. A game pair 𝐺01
con-

tains two games that export the same procedures, i.e., 𝐺01 = (𝐺0,𝐺1) such that export(𝐺0) =
export(𝐺1) and import(𝐺𝑏) = ∅ for 𝑏 = 0, 1. A distinguisher for a game pair is a package D with

import(D) = export(𝐺0) = export(𝐺1) and export(D) = {Run}, where Run is an entry-point

procedure that can call the procedures exported by the games and returns a boolean value: true
or false. When a game𝐺𝑏

exports a single procedure Run : unit→ bool as above, we denote by
Pr [true← 𝐺] the probability that 𝐺.Run returns the boolean value true when running on initial

memory. We can quantify how much a distinguisher can distinguish the two packages in a game

pair:

Definition 2.1 (Distinguisher advantage). The advantage of a distinguisher D against a game pair

𝐺01 = (𝐺0,𝐺1) is

𝛼 (𝐺01) (D) =
��
Pr

[
true← D ◦𝐺0

]
− Pr

[
true← D ◦𝐺1

] ��
Reasoning about advantage. Next, we review the two main results used for equational-like

reasoning about advantage against games in SSP:

Lemma 2.2 (Triangle Ineqality). Let 𝐺0, 𝐺1 and 𝐺2 be games, we have that for every distin-
guisher D,

𝛼 (𝐺0,𝐺2) (D) ≤ 𝛼 (𝐺0,𝐺1) (D) + 𝛼 (𝐺1,𝐺2) (D).

Proof. By unfolding Definition 2.1 we have

𝛼 (𝐺0,𝐺2) (D) =
��
Pr

[
true←D ◦𝐺0

]
− Pr

[
true←D ◦𝐺2

] ��
= |Pr

[
true←D ◦𝐺0

]
− Pr

[
true←D ◦𝐺1

]
+ Pr

[
true←D ◦𝐺1

]
− Pr

[
true←D ◦𝐺2

]
|

≤
��
Pr

[
true←D ◦𝐺0

]
− Pr

[
true←D ◦𝐺1

] ��
+
��
Pr

[
true←D ◦𝐺1

]
− Pr

[
true←D ◦𝐺2

] ��
= 𝛼 (𝐺0,𝐺1) (D) + 𝛼 (𝐺1,𝐺2) (D)

□

In general, we want to bound the advantage to distinguish 𝐺0
and 𝐺𝑛

(i.e., the advantage

𝛼 (𝐺0,𝐺𝑛) (D) against game pair (𝐺0,𝐺𝑛)). In order to do so, by repeatedly applying Lemma 2.2, it

is enough to exhibit a chain of games 𝐺0,𝐺1,𝐺2, . . . ,𝐺𝑛
so that a bound for 𝛼 (𝐺0,𝐺𝑛) (D) can be

given by

𝛼 (𝐺0,𝐺1) (D) + 𝛼 (𝐺1,𝐺2) (D) + . . . + 𝛼 (𝐺𝑛 − 1,𝐺𝑛) (D).

Lemma 2.3 (Reduction). Let 𝐺01 = (𝐺0,𝐺1) be a game pair and let 𝑃 be an arbitrary package.
Then, for every distinguisher D, we have

𝛼 (𝑃 ◦𝐺0, 𝑃 ◦𝐺1) (D) = 𝛼 (𝐺01) (D ◦ 𝑃).

SSProve: A foundational framework for modular cryptographic proofs in Coq 7

Proof. By unfolding Definition 2.1 and applying the associativity law of sequential composi-

tion (Equation (1)), we have

𝛼 (𝑃 ◦𝐺0, 𝑃 ◦𝐺1) (D) =
��
Pr

[
true← D ◦

(
𝑃 ◦𝐺0

)]
− Pr

[
true← D ◦

(
𝑃 ◦𝐺1

)] ��
=
��
Pr

[
true← (D ◦ 𝑃) ◦𝐺0

]
− Pr

[
true← (D ◦ 𝑃) ◦𝐺1

] ��
= 𝛼 (𝐺01) (D ◦ 𝑃)

□

As its name indicates, Lemma 2.3 is used to reduce the advantage of the distinguisher over a

composed game pair (𝑃 ◦𝐺0, 𝑃 ◦𝐺1
) to the advantage over part of the game pair𝐺01

, for which we

know a bound. We will use both these SSP lemmas in §2.3.

Shared state. As mentioned above, in SSProve we use a shared global memory and composed

packages can share state. In particular our sequential and parallel composition are defined even in

cases in which the composed packages use the same memory locations. This was easy to formalize

in Coq, and allowed us to prove formally that the algebraic laws for package composition as well

as the two lemmas above hold even when the involved packages share state.

This treatment of state in SSProve is quite different from the original SSP [40], in which composed

packages have to always be “state separated” (i.e., have disjoint state). To make the state of packages

disjoint they allow for 𝛼-renaming of state variables—which shows up for instance in their definition

of code equality. Such informal 𝛼-renaming conventions are generally more difficult to formalize

in a proof assistant [2, 14, 96]. Yet in the absence of 𝛼-renaming, requiring state disjointness

everywhere would only increase the proof burden and the clutter in the proved security results (it

would require the adversary’s state to be disjoint from all intermediate games in the proof).

Adversaries. State separation is, however, still crucial for defining adversaries against game pairs.

An adversary A for a game pair is a distinguisher whose memory footprint is disjoint from the

footprint of each game in the pair. We define adversaries, the memory footprint of a package, and

disjointness of footprints more formally in §3.3.

Perfect game indistinguishability. We say that the games𝐺0
and𝐺1

of a game pair𝐺01
are perfectly

indistinguishable when 𝛼 (𝐺01) (A) = 0 for every adversaryA. Perfect indistinguishability is a form

of observational equivalence and states that no adversary can learn any information about which

game in the pair it is interacting with.

2.2 Proving perfect indistinguishability steps in a probabilistic relational program logic
We now present the main novel result brought by SSProve. The SSP laws above deal only with

the high-level structure of composed packages. However, we often also need to show that two

concrete games are equivalent with respect to what an adversary can learn from using them, i.e.,

perfect indistinguishability. In SSProve we formally verify this kind of equivalence by reducing it

to proving a family of semantic judgments in a probabilistic relational program logic. The logic we

use is a variant of pRHL, a probabilistic relational Hoare logic introduced by Barthe et al. [26] in

CertiCrypt. Judgments of this logic are of the form

⊨ {{{(𝑚0,𝑚1). 𝜙}}} 𝑐0 ∼ 𝑐1 {{{(𝑚′0, 𝑎0), (𝑚′1, 𝑎1). 𝜓}}}
and intuitively mean that after separately running the two code fragments 𝑐0 and 𝑐1 on the corre-

sponding component of a pair of memories𝑚0,𝑚1 satisfying a precondition 𝜙 , the final memories

𝑚′
0
,𝑚′

1
and results 𝑎0, 𝑎1 satisfy the postcondition 𝜓 . When writing pre- and postconditions we

write as 𝑝. 𝑀 a function that binds 𝑝 and has body𝑀 (usually denoted by 𝜆𝑝. 𝑀 in the functional

8 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

programming community).
2
This notation is handy for writing postconditions, which depend on

final memories and on final results.We adopt the convention that the variables𝑚0 and𝑚1 stand

for the state associated to 𝑐0 and 𝑐1 in preconditions, the initial memories, and𝑚′
0
,𝑚′

1
stand for

the corresponding state in postconditions, the final memories. We will omit them from judgments

when no ambiguity can arise. We now state the main theorem of SSProve:

Theorem 2.4. Let𝐺01 = (𝐺0,𝐺1) be a game pair with export interface E = export(𝐺𝑏). Moreover,
assume that𝜓 is a stable invariant that relates the memories of 𝐺0 and 𝐺1, and that it holds on the
initial memories.

If for each provided procedure 𝑓 : 𝐴→ 𝐵 ∈ E, we have that for all 𝑎 ∈ 𝐴,
⊨ {{{𝜓}}} 𝐺0.𝑓 (𝑎) ∼ 𝐺1.𝑓 (𝑎) {{{(𝑚′

0
, 𝑏0), (𝑚′1, 𝑏1) . 𝑏0 = 𝑏1 ∧𝜓 (𝑚′0,𝑚′1)}}}

then we can conclude that 𝛼 (𝐺01) (A) = 0 for any adversary A.

Intuitively, we ask that both procedures, when run on memories satisfying𝜓 , yield results drawn

from the same distribution and memories still satisfying𝜓 . We leave the precise definition of stable

invariants and how this theorem is proved to §4.2, but the main idea behind this invariant is that it

keeps track of a relation between the memories of 𝐺0
and 𝐺1

, and that this relation is preserved as

different procedures from the interface are called during the execution. This can be understood as a

bisimulation argument between packages, where transitions between states come from procedure

calls. We illustrate how this theorem is used in the examples from the next two subsections.

2.3 Security proof of PRF-based encryption in SSProve
We first illustrate the key ideas of SSProve on a cryptographic proof by Brzuska et al. [40] that we

have verified in Coq using our framework. In this proof, reasoning about composed packages (using

Lemmas 2.2 and 2.3 above) allows for a high level of abstraction that drives the proof argument.

Some steps of this proof are, however, justified by perfect indistinguishability between games,

which involves inspecting the procedures of the games and applying program transformations to

show the equivalence. In the previous paper proof [40] these steps were only justified informally
by code inspection. Instead, we have formally verified these steps too, using Theorem 2.4 and our

relational program logic.

Brzuska et al. [40] show how to construct a symmetric encryption scheme out of a pseudo-random

function (PRF) and use the SSPmethodology to reduce security of the encryption scheme—expressed

as IND-CPA—to the security of the pseudo-random function, expressed as being indistinguishable
from a package doing random sampling.

The scheme assumes a pseudo-random function called prf with the following signature

prf : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑛

where {0, 1}𝑛 represents the set of 𝑛-bit sequences. It is possible to formalize and quantify the

security of PRF-based encryption as the probability for an adversary to distinguish it from a package

that samples from a uniform distribution (real vs random paradigm [86]). Concretely, given the

packages PRF0 and PRF1 as in Figure 4, where “<$ uniform S” represents uniform sampling from

set S, the advantage of an adversary A against the game PRF01 = (PRF0, PRF1) is defined using

Definition 2.1 as follows:

𝛼 (PRF01) (A) =
��
Pr

[
true← A ◦ PRF0

]
− Pr

[
true← A ◦ PRF1

] ��
The three basic algorithms we use to construct a symmetric encryption scheme out of prf are

given in Figure 5. These are not packages themselves, but rather code used inside packages.

2
We will still use the 𝜆 notation for programs.

SSProve: A foundational framework for modular cryptographic proofs in Coq 9

package: PRF0

mem: k : option {0, 1}𝑛

Eval(x):

if k = ⊥ then

k <$ uniform {0, 1}𝑛
return prf(k, x)

package: PRF1

mem: T : map [{0, 1}𝑛 -> {0, 1}𝑛]

Eval(x):

if T[x] = ⊥ then

T[x] <$ uniform {0, 1}𝑛
return T[x]

Fig. 4. Packages PRF0 and PRF1

enc(k, msg):

r <$ uniform {0, 1}𝑛
pad ← prf(k, r)

c ← msg xor pad

return (r, c)

kgen():

k <$ uniform {0, 1}𝑛
return k

dec(k, (r, c)):

pad ← prf(k, r)

msg ← c xor pad

return msg

Fig. 5. Algorithms for prf-based encryption scheme

package: IND-CPA0

mem: k : option {0, 1}𝑛

Enc(msg):

if k = ⊥ then

k <$ uniform {0, 1}𝑛
(r,c) ← enc(k, msg)

return (r,c)

package: IND-CPA1

mem: k : option {0, 1}𝑛

Enc(msg):

if k = ⊥ then

k <$ uniform {0, 1}𝑛
msg ' <$ uniform {0, 1}𝑛
(r,c) ← enc(k, msg ')

return (r,c)

Fig. 6. Packages IND-CPA0 and IND-CPA1

The security property proposed for this encryption scheme is defined as the advantage on a

game pair that captures indistinguishability under chosen-plaintext attack (IND-CPA). We refer

to this game pair as IND-CPA01, and the packages involved are introduced in Figure 6. Notice that

in procedure IND-CPA1 .Enc the argument msg is never used, the encryption procedure is run on a

random msg'. Therefore the advantage of an adversary with respect to the game pair IND-CPA01

represents the probability that the adversary is able to distinguish the encryption of msg from the

encryption of a random bit-string. The security of the encryption procedure with respect to an

adversary A against IND-CPA01 is then 𝛼 (IND-CPA01) (A).

10 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

package: MOD-CPA0

mem:

Enc(msg):

r <$ uniform {0, 1}𝑛
pad ← Eval(r)

c ← msg xor pad

return (r, c)

Eval

MOD-CPA
bEnc PRF

i

package: MOD-CPA1

mem:

Enc(msg):

msg ' <$ uniform {0, 1}𝑛
r <$ uniform {0, 1}𝑛
pad ← Eval(r)

c ← msg ' xor pad

return (r, c)

Fig. 7. Packages MOD-CPA𝑏 import Eval from PRF𝑖

Brzuska et al. [40] use a sequence of game-hops to bound 𝛼 (IND-CPA01) in terms of (a linear

function of) the advantage 𝛼 (PRF01). This technique of game-hops follows the style of inequality

reasoning chains from §2.1 (Lemma 2.2), where each step involves establishing the advantage on a

game pair, and as a result we obtain a bound on the advantage of the game consisting of the initial

and final game.

In this example, IND-CPA𝑏 is shown equivalent to a variant, MOD-CPA𝑏 , that gets the pad through

the PRF, i.e., with a call to Eval of the package PRF0 or PRF1 (see Figure 7). By repeatedly applying

Lemma 2.2, we bound 𝛼 (IND-CPA01) (A) by

𝛼 (IND-CPA0, MOD-CPA0 ◦ PRF0) (A) +
𝛼 (MOD-CPA0 ◦ PRF0, MOD-CPA0 ◦ PRF1) (A) +
𝛼 (MOD-CPA0 ◦ PRF1, MOD-CPA1 ◦ PRF1) (A) +
𝛼 (MOD-CPA1 ◦ PRF1, MOD-CPA1 ◦ PRF0) (A) +
𝛼 (MOD-CPA1 ◦ PRF0, IND-CPA1) (A)

By observing that 𝛼 (IND-CPA0, MOD-CPA0◦PRF0) (A) = 0, and 𝛼 (MOD-CPA1◦PRF0, IND-CPA1) (A) = 0,

and by using Lemma 2.3 twice, we reduce this bound to

𝛼 (PRF01) (A ◦ MOD-CPA0) + 𝜀stat. (A) + 𝛼 (PRF01) (A ◦ MOD-CPA1).

where 𝜀stat. = 𝛼 (MOD-CPA0 ◦ PRF1, MOD-CPA1 ◦ PRF1). The advantage of an attacker with respect to

MOD-CPA0 and MOD-CPA1 is usually referred to as statistical gap, a polynomial function of the number

of calls from the adversary (see [40, appendix A]). One could prove a precise bound based on the

birthday paradox here [40, appendix A], but this would require formal reasoning about failure

events [26]. It would be useful to extend SSProve in the future with a unary, union bounds logic for

adding more precision to such steps [23].

We can informally interpret the formally proved bound above as saying that if the advantage of

A ◦ MOD-CPA𝑏 against PRF and the statistical gap are negligible then the advantage of A against

IND-CPA01 is also negligible, under the additional assumption that A is probabilistic polynomial

time and has disjoint state from PRF1, so that A ◦ MOD-CPA𝑏 is an adversary against PRF01. While

this disjointness assumption is needed at the top level, when applying Lemma 2.2 for reducing the

advantage of the adversaryA for game pair IND-CPA01, we are basically usingA as a distinguisher,

SSProve: A foundational framework for modular cryptographic proofs in Coq 11

which does not introduce additional state disjointness requirements, i.e., for applying Lemma 2.2,

the state of A is only required to be disjoint from IND-CPA01, not from MOD-CPA𝑏 and PRF𝑏 .
It remains to justify the two perfect indistinguishability statements above. These steps involve

replacing an informal argument [40] by a fully formal one, moving to our probabilistic relational

program logic. We will detail one of these steps: 𝛼 (IND-CPA0, MOD-CPA0 ◦ PRF0) (A) = 0. The other

step, 𝛼 (MOD-CPA1 ◦ PRF0, IND-CPA1) (A) = 0, is analogous.

In order to prove this equivalence, Brzuska et al. [40] notice that the Enc procedures of IND-CPA0

and MOD-CPA0 ◦ PRF0 (see Figure 8) return the same distributions of ciphertext when called on the

same msg. The two procedures are obtained by “inlining” the code of PRF0.Eval inside MOD-CPA0,
and by “unfolding” the code of enc.

IND-CPA0.Enc(msg)

if k = ⊥ then

k <$ uniform {0, 1}𝑛
r <$ uniform {0, 1}𝑛
pad ← prf(k,r)

c ← msg xor pad

return (r, c)

(MOD-CPA0 ◦ PRF0).Enc(msg)
r <$ uniform {0, 1}𝑛
if k = ⊥ then

k <$ uniform {0, 1}𝑛
pad ← prf(k,r)

c ← msg xor pad

return (r, c)

Fig. 8. Enc procedures expanded

The left- and right-hand side procedures in Figure 8 only differ when k = ⊥, in which case the

left Enc procedure first samples k and then r, while the right Enc first samples r and then k. In both

procedures, k and r are drawn from independent distributions. Here Brzuska et al. [40] conclude
informally that independence allows to “swap” the two operations. We instead use Theorem 2.4 to

formally reduce 𝛼 (IND-CPA0, MOD-CPA0 ◦ PRF0) (A) = 0 to showing the equivalence of the two Enc
procedures from Figure 8. In our probabilistic relational program logic, this comes down to proving

the following judgment for all plaintext messages msg,

⊨ {{{(𝑚0,𝑚1). 𝑚0 =𝑚1}}}
IND-CPA0 .Enc(msg)

∼ (MOD-CPA0 ◦ PRF0).Enc(msg)
{{{(𝑚′

0
, 𝑟𝑐0), (𝑚′1, 𝑟𝑐1). 𝑚′0 =𝑚′1 ∧ 𝑟𝑐0 = 𝑟𝑐1}}}

This judgment intuitively states that encrypting msg with the same initial memories “𝑚0 = 𝑚1”,

terminates in memories and ciphertexts drawn from the same distribution, “𝑚′
0
=𝑚′

1
∧ 𝑟𝑐0 = 𝑟𝑐1”.

We use the following instance of the swap rule from §4.1, to formally justify this swapping:
3

⊨ {{{𝑚0 =𝑚1}}} x <$ uniform {0,1}n ∼ y <$ uniform {0,1}n {{{𝑚′
0
=𝑚′

1
∧ 𝑐0 = 𝑐1}}}

⊨ {{{𝑚0 =𝑚1}}} y <$ uniform {0,1}n ∼ x <$ uniform {0,1}n {{{𝑚′
0
=𝑚′

1
∧ 𝑐0 = 𝑐1}}}

⊨ {{{𝑚0 =𝑚1}}}
x <$ uniform {0,1}n ; y <$ uniform {0,1}n ∼
y <$ uniform {0,1}n ; x <$ uniform {0,1}n

{{{𝑚′
0
=𝑚′

1
∧ 𝑐0 = 𝑐1}}}

3
Here we omit quantifications in pre- and postconditions for conciseness.

12 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

KeyGen ():

sk <$ uniform {0, ..., n-1}

pk ← gsk

return (pk, sk)

Enc(pk, msg):

rnd <$ uniform {0, ..., n-1}

crnd ← grnd

shs ← pkrnd

cmsg ← msg * shs

return (crnd , cmsg)

Dec(sk, (crnd , cmsg)):

return cmsg * (crnd
sk)-1

Fig. 9. Algorithms for ElGamal encryption scheme

2.4 Security proof of ElGamal in SSProve
We also illustrate the key ideas of SSProve on a security proof for the ElGamal encryption scheme

inspired by The Joy of Cryptography textbook [86, Chapter 15.3]. ElGamal belongs to the family of

public-key or asymmetric encryption schemes, which use a public key for encryption and a private

key for decryption. Public-key schemes therefore require a key generation algorithm producing

the pair of public and private keys. In our formalization it suffices to provide the aforementioned

algorithms together with key-, plaintext- and cipher-spaces to automatically obtain a public-key

scheme together with its related security notions (to be proved) such as security against chosen

plaintext attacks (CPA). In what follows we describe which spaces and algorithms define ElGamal

and the security proof we provided for it.

ElGamal is parameterized by a multiplicative cyclic group (G, *) with 𝑛 elements and with

generator 𝑔, usually denoted by ⟨𝑔⟩ = G. Plaintexts are elements𝑚𝑠𝑔 ∈ G and ciphertexts are pairs

of group elements 𝑐 = (𝑐rnd, 𝑐msg) ∈ G × G. Secret keys are elements of Z𝑛 , while public keys are
group elements once again, pk ∈ G. The key generation algorithm (KeyGen in Figure 9) generates a

secret key that is a random number sk ∈ {0, . . . , 𝑛 − 1} and a public key that is 𝑔sk. Encryption and

decryption (Enc and Dec in Figure 9) involve the group operation (_*_), exponentiation (_)_ and
the multiplicative inverse (_)-1. Encryption works probabilistically, generating an ephemeral key

rnd to derive a shared secret shs which is used to encrypt the plaintext message msg.
Under the Decisional Diffie–Hellman (DDH) assumption for the group G, namely that DDH0 and

DDH1 from Figure 10 are computationally indistinguishable, one can prove that an adversary cannot

distinguish messages encrypted with the ElGamal scheme from ciphertexts that are randomly

sampled (CPA). Our formalization only considers the case in which the adversary can see a single

ciphertext (one-time CPA,writtenOT-CPA), as it is known that this suffices for public-key encryption

schemes to satisfy CPA [86, Claim 15.5]. We leave the formalization of this last result as future

work and discuss hereafter our proof of OT-CPA in SSProve.

The security property OT-CPA is expressed in terms of the advantage against game pair CPA01 in
Figure 11. An adversary A can call Get_pk() and get the public key, if already initialized.

4
The

adversary can “challenge” a package to encrypt a certain plaintext msg through Challenge(msg).
Both packages return a ciphertext only if the counter is 0—as expressed by the use of assert—so
the adversary can only see one ciphertext. Both packages call KeyGen to generate public and private
keys, but while CPA0 indeed encrypts the message provided by the adversary with the public

key through Enc(pk, msg), the package CPA1 instead returns a randomly sampled ciphertext

4
In a previous version of this work [1] we were – erroneously – not providing Get_pk() to the adversary, so the result

was not a proper public-key scheme. We thank Markulf Kohlweiss for making us aware of this flaw, which was easy to fix.

Formalizing the connection between OT-CPA and CPA [86, Claim 15.5] would have likely also exposed this flaw.

SSProve: A foundational framework for modular cryptographic proofs in Coq 13

package: DDH0

mem: pk : option pubKey
sk : option secKey

Query()

sk <$ uniform {0, ..., n-1}

rnd <$ uniform {0, ..., n-1}

pk ← gsk

return (gsk,grnd,gsk·rnd)

package: DDH1

mem: pk : option pubKey
sk : option secKey

Query()

sk <$ uniform {0, ..., n-1}

rnd <$ uniform {0, ..., n-1}

rnd ' <$ uniform {0, ..., n-1}

pk ← gsk

return (gsk,grnd,grnd’)

Fig. 10. The DDH assumption states that DDH0 and DDH1 are computationally indistinguishable

package: CPA0

mem: pk : option pubKey
sk : option secKey
counter : nat

Get_pk ():

return pk

Challenge(msg):

assert counter = 0

(pk, sk) ← KeyGen ()

(crnd , cmsg) ← Enc (pk, msg)

counter ++

return (crnd , cmsg)

package: CPA1

mem: pk : option pubKey
sk : option secKey
counter : nat

Get_pk ():

return pk

Challenge(msg):

assert counter = 0

(pk, sk) ← KeyGen ()

(crnd , cmsg) <$ uniform G × G
counter ++

return (crnd , cmsg)

Fig. 11. Packages CPA0 and CPA1 in ElGamal

(crnd , cmsg) <$ uniform G × G, i.e., a pair of group elements sampled from the uniform distribution

on G × G.
The OT-CPA proof reduces the advantage of adversary A against (CPA0, CPA1) to the advantage

of A ◦ MOD-CPA against (DDH0, DDH1), with the auxiliary package MOD-CPA listed in Figure 12:

𝛼 (CPA01) (A) ≤ 𝛼 (DDH01) (A ◦ MOD-CPA).

We once again obtain this result by repeatedly applying Lemma 2.2 to bound 𝛼 (CPA01) (A) by

𝛼 (CPA0, MOD-CPA ◦ DDH0) (A) +
𝛼 (MOD-CPA ◦ DDH0, MOD-CPA ◦ DDH1) (A) +
𝛼 (MOD-CPA ◦ DDH1, CPA1) (A)

We prove that the first and last advantages are null by proving the packages perfectly indistin-

guishable, and the remaining advantage is equal to 𝛼 (DDH01) (A ◦ MOD-CPA) by simple application

of Lemma 2.3. It now remains to show the equivalences below:

14 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

package: MOD-CPA
mem: pk : option pubKey

counter : nat

Get_pk ():

return pk

Challenge(msg):

assert counter = 0

(pk, crnd , shs) ← Query()

counter ++

cmsg ← msg * shs

return (crnd , cmsg)

Fig. 12. Package MOD-CPA imports Query from DDH𝑏

Step 𝛼 (CPA0, MOD-CPA ◦ DDH0) (A) = 0: We apply Theorem 2.4 and reduce the goal to a relational

judgment between CPA0.Challenge(msg) and (MOD-CPA ◦ DDH0).Challenge(msg) for a generic

plaintext msg, and where the invariant 𝜓 is equality of memories. Inlining the code of Query
provided by DDH0 inside MOD-CPA and unfolding one realizes that the two code fragments are

identical and the judgment holds by application of the reflexivity rule in §4.1.

Step 𝛼 (MOD-CPA ◦ DDH1, CPA1) (A) = 0: This step is quite similar to the one above. After inlining,

however, the two code fragments are not exactly the same, since in particular CPA1 completely

ignores msg and returns a random ciphertext, while MOD-CPA ◦ DDH1 returns msg*grnd’ for a random
rnd'. To have equality of memories as invariant 𝜓 , we show that in G, multiplication by g^(_)
acts like a one time pad, which is a standard result [26, Section 6.2].

3 FORMALIZING STATE-SEPARATING PROOFS
We separate the programming language and thus the reasoning into two strata: code and packages.

We define the syntax of code (§3.1), relate it to the notation used in §2.1, and explain its seman-

tics (§3.2). We then give a formal description of packages (§3.3) and the algebraic laws they obey

(§3.4). In §2.1 we took some license regarding notation in order to stay close to the presentation of

Brzuska et al. [40]. The code examples in the remainder of the paper more faithfully follow the

Coq notations we use in the formal development of SSProve.

3.1 Syntax for cryptographic code (free monad)
The language of the Coq system, Gallina, is a dependently typed, purely functional programming

language. As such, we can directly express functional code in Gallina, but not code with side-effects

such as reading from and writing to memory, probabilistic sampling, or external procedure calls.

We thus represent cryptographic code via a combination of the ambient language Gallina and

a monad of effectful computations. Monads constitute an established way of adding effects to a

purely functional language [76, 97]. Free monads in particular allow to separate the representation

(syntax) of an embedded language from its interpretation (semantics).

SSProve: A foundational framework for modular cryptographic proofs in Coq 15

Raw code. We use a hybrid approach [78] of embedding the pure fragment of our cryptographic

programming language shallowly in Coq, and embedding the effects deeply via a free monad. This

free monad is defined as an inductive type:
5

Inductive raw_code A : Type : =

| return (x : A)

| call (p : opsig) (x : src p) (𝜅 : tgt p → raw_code A)

| get (ℓ : Location) (𝜅 : type ℓ → raw_code A)

| put (ℓ : Location) (v : type ℓ) (𝜅 : raw_code A)

| sample (op : Op) (𝜅 : dom op → raw_code A) .

Some more explanations about raw_code are in order. The type parameter A indicates the result of

a computation of type raw_code A. The first clause of the above definition lets us inject any pure value

x of type A into the monad as return x. Calls to external procedures are represented via call p x 𝜅,

where the first argument p : opsig specifies the name of the procedure, the type of its argument

(src p), and its return type (tgt p). The second argument x is the input value of type src p passed

to the called procedure. The last argument 𝜅 is the continuation of the program, awaiting the result

of the call to p. The get and put operations take a (typed) global memory location ℓ as argument,

respectively read from and write to that location, and continue with the continuation 𝜅. Finally,

we may sample from a collection of probabilistic subdistributions Op. Subdistributions constitute

the base of our code semantics and are further discussed in §3.2. The type Op is a parameter of the

language that can be instantiated by the user. Sampling a subdistribution op on type dom op (the

domain of the subdistribution) can be composed with a matching continuation 𝜅 (continuations are

explained below).

We will use the following two pieces of code as running examples to explain different aspects of

the definition.

get ℓ (λ xℓ . put ℓ (xℓ + 1) (return xℓ)) (2)

sample (uniform {0, 1}𝑛)
(λ y . call Prf (y , 101010) (λ z . return z)) (3)

The code in (2) increments the value stored at location ℓ by 1 and returns the value before the

increment. The code in (3) draws a random bit-string y of length 𝑛, calls an external procedure Prf

with arguments y and bit-string 101010, and returns the result.

Code with locations and interface. Raw code is merely a representation of syntax. To record

which imported procedures and global memory locations are used, we introduce a corresponding

predicate. We consider the code with respect to set of locations L and to an import interface I
which is a set of procedure signatures (opsig) consisting of a name, an input type and an output

type. The predicate checks that all reads and writes performed in the code are made to locations in

L and that all imported procedures belong to I. Concretely, the code in (2) uses locations in the

singleton set {ℓ} and has the empty import interface, while (3) uses the empty set of locations and

the interface {Prf : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑛 }. The type codeL,𝐼 is then simply defined as raw code

that verifies the predicate corresponding to locations L and import interface I:

codeL,𝐼 A = { c : raw_code A | has_locs_and_imports c L I }

5
This type of raw code comes equipped with an induction principle (basically structural induction on trees), which is

used for instance in the proof of Theorem 2.4, in Theorem 4.1, and in the definition of the bind operation and sequential

composition of packages by recursion over code.

16 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

In the paper we sometimes omit the set of locations and the interface. Thanks to the use of tactics

and Coq’s type classes, proofs regarding these locations and interfaces for well-scoped user-written

code are constructed automatically without requiring user intervention.

Locations are typed, which means that each ℓ in L is designated a specific type that corresponds

to the type of data stored in the respective memory cell. The type assigned to ℓ is denoted by type ℓ .

Continuations. A continuation is a suspended computation awaiting the result of an operation,

intuitively corresponding to the rest of the program. Consider for instance the code (2). The get

operation performs a memory lookup at the location ℓ , and its continuation is a Coq function

“(λ xℓ . put ...) ” of type “type ℓ → raw_code nat” that receives the value stored at ℓ as its parameter

𝑥ℓ . The continuation in turn performs a put operation, storing the value 𝑥ℓ + 1 at memory location

ℓ , and returns the value 𝑥ℓ . The code thus corresponds to the expression written as ℓ++ in common

imperative languages.

Variables. As demonstrated in example (2), we draw a strict distinction between a location ℓ ,

which can be accessed and updated via get and put, and the value stored in memory at location ℓ .

In (2), this value is available in the continuation of get ℓ (λxℓ . put ...) as xℓ . Formally speaking, xℓ
is an immutable Coq variable, and in (2) the location ℓ itself is a Coq variable of type Location. This

distinction is already present in SSP [40, Def. 2], where locations correspond to “state variables”

and the ambient, mathematical notion of variable is referred to as “local variable”.

Memory initialization. As mentioned in §2.1, memory locations are implicitly initialized to default

values depending on their type (for instance in Figure 2 n is initialized to 0). Yet we frequently want

to clearly distinguish the case when a location was implicitly initialized to a default value from the

case when it was explicitly initialized. For instance, in Figure 6 we want to distinguish the case in

which the key k has not yet been generated from the case in which it has been. To achieve this we

define the type of the k as option key, using the following standard definition for the option type:

Inductive option A : = ⊥ | Some (a : A) .

Memory locations of type option key are implicitly initialized to the dummy value ⊥, which is

different from any generated key, which is tagged with the constructor Some.

Monadic bind. The bind operation of the monad, with type code A → (A→ code B)→ code B, al-

lows the composition of effectful code. Take for instance the following pieces of code.

Definition c : code nat : =

sample (uniform bool) (λb . if b then return m1 else return m2)

Definition 𝜅 : nat → code nat : = λm . put ℓ m (return 0)

We would like to use c as an argument to 𝜅, but the types don’t match: 𝜅 expects a value of type

nat as argument, not a computation of type code nat. We define a standard bind operation that

achieves this by traversing the code of c, applying 𝜅 when a returned value is encountered, and

recursively pushing 𝜅 into any other continuations.

Fixpoint bind (c : code A) (𝜅 : A → code B) : code B : =

match c with

| return a⇒ 𝜅 a

| call p v 𝜅 '⇒ call p v (λ x . bind (𝜅 ' x) 𝜅)

| get l 𝜅 '⇒ get l (λ v . bind (𝜅 ' v) 𝜅)

| put l v 𝜅 '⇒ put l v (bind 𝜅 ' 𝜅)

| sample op 𝜅 '⇒ sample op (λ a . bind (𝜅 ' a) 𝜅)

end

SSProve: A foundational framework for modular cryptographic proofs in Coq 17

An easy structural induction over code allows us to prove that bind satisfies the expected monad

laws: bind is associative (bind m (λ p . bind (f p) g) = bind (bind m f) g), and return serves as a

unit (bind (return x) f = f x and bind m return = m).

Loops. We do not have syntax for loops in code. However, since we are embedding in Coq we

take advantage of its recursion mechanisms to write terminating loops. The most basic construction

we can write is a “for i := 0 to N do c” loop that repeats (N+1)-times a command c, providing to c

the value of the index i. In the code below, the pattern matching happens over the natural number

N, which in Coq is represented in unary format, so it is either 0 (zero) or S n (read successor of n,

for some natural number n).

Fixpoint for_loop (N : nat) (c : nat→ code unit) : code unit : =

match N with

| 0 ⇒ c 0

| S n⇒ bind (for_loop n c) (λ _ . c N)

end .

More generally, we can define a “do-while” loop that repeatedly executes a loop body while a

condition holds, checked after each iteration. To ensure termination in Coq we add a natural number

N to bound the maximum number of iterations:

Fixpoint do_while (N : nat) (c : code bool) : code bool : =

match N with

| 0⇒ return false

| S n⇒ bind c (λb . if b then do_while n c else return true)

end .

At the end, the returned boolean signals whether there was remaining fuel (i.e., iteration steps)

available or not. In the future, we hope to extend SSProve to potentially non-terminating loops,

since the semantic models of probabilistic programs usually support general fixpoints (as further

discussed in §5.5).

Standard subdistributions. Probabilistic operations denoting a collection of subdistributions we

may sample from are included in the type Op, which is a parameter of our language. Standard

subdistributions including uniform sampling on finite types as well as a null subdistribution are

predefined for convenience. The null subdistribution in particular allows us to represent failure

and an assert construct. Failure at type A is defined as sampling from the null distribution dnull.

Definition fail A : code A : =

x ← sample dnull ; return x .

A simple assertion is not expected to produce any interesting values but only gets evaluated for the

possibility of failing if the condition is violated. This is expressed by the fact that a successful assert

simply returns a value of unit type, where unit is Coq’s singleton type with a unique inhabitant () .

Definition assert (b : bool) : code unit : =

if b then return () else fail unit .

If b is true, then assert returns the trivial value () , but if b is false, we instead sample from

the dnull subdistribution via fail unit, assigning probability zero to all values of the type unit

(i.e., to ()). Sampling from the null subdistribution is similar to non-termination, and means that

the continuation will never be called. This provides a simple and clearly defined semantics for

assertion failures. While this is not the only choice [29, 52, 84], this formalizes our understanding

18 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

of the following informal convention from the paper introducing SSP [40]: “all our definitions and

theorems apply only to code that never violates assertions.”

We can see this use of assert in Figure 11 from §2.4. The packages CPA𝑏 ensure that the Challenge
procedure can be called only once by running assert counter = 0. If the assertion succeeds, we

may assume that counter = 0 holds in the rest of the procedure, until counter is incremented.

We can demonstrate how distinguishers interact with procedures calling assert by computing

Pr

[
true← D ◦ CPA𝑏

]
(as used in Definition 2.1) for a distinguisher D that calls Challenge twice

on some fixed message before always returning true. Even though the distinguisher still returns

true in this scenario, assert will fail the second time the distinguisher calls Challenge, and thus

the subdistribution represented by

(
D ◦ CPA𝑏

)
.Run becomes the null subdistribution. It follows

that Pr

[
true← D ◦ CPA𝑏

]
= 0.

The simple use of assert above is “logical”: we limit the input to certain functions or the ways in

which protocols can be called in order to exploit these assertions in our security reasoning. A more

complex use of assertions, which we call “dependent”, occurs in the following example. Consider

the situation where we have a memory location ℓ : Location holding a key which is initialized

to ⊥. Formally, this amounts to the information type ℓ = option key, which may be presented in

the signature of a package as mem: ℓ : option key. We did not distinguish immutable variables and

locations in §2, but we carry out a careful analysis of memory initialization in the KEM-DEM case

study in §6. For instance, we will see in Figure 14 (§6, Page 36) an implementation of a Get()
procedure that returns the key stored at location k_loc. This procedure defines a partial function of

type unit→ key, that fails to return a value if the memory location has not yet been explicitly

initialized (i.e., it is ⊥).

mem: k_loc : option key

Get():

k ← get k_loc

assert (k ≠ ⊥) as kSome

return (getSome k kSome)

We first retrieve the potentially not explicitly initialized key from memory as k, of type option key.
We then check via a dependent assert that k is not ⊥, and record the asserted condition as kSome of

type k ≠ ⊥. We can now apply getSome with kSome to safely coerce k from option key to key. In
this example, the code that follows the assertion depends on the asserted condition, whereas in

the previous example with counter the assertion was only used when reasoning in the relational

program logic. Indeed the continuation of dependent assert, called kont in the declaration below,

has type b = true→ code A. In other words, it constitutes a piece of code, computing a value of

type A, that is defined only when the assertion b is true. Operationally assertD is similar to the

simple assert above, but the actual Coq definition in terms of fail and a conditional is more

complicated because it uses dependent elimination to type-check the success branch. Since such

details are not important here, we refer the interested reader to the Coq source and only show the

type of this operator:

Definition assertD A b (kont : b = true → code A) : code A .

Procedure calls. A call to an external procedure such as Prf in (3) is represented by the call

operation, taking as arguments a procedure name p annotated with a type, a value matching the

argument type of p, and a continuation 𝜅 matching the return type of p. In §3.3 we show how an

implementation gets substituted for this placeholder via sequential package composition.

SSProve: A foundational framework for modular cryptographic proofs in Coq 19

Notation. The use of continuations is pervasive in monadic code, and to alleviate the presentation

we introduce the following more familiar notation.

x ← c1 ; c2 := bind c1 (λx.c2)

x ← p(a) ; c := call p a (λx.c)

x ← get ℓ ; c := get ℓ (λx.c)

put ℓ := v ; c := put ℓ v c

x <$ D ; c := sample D (λx.c)

assert e as H ; c := assertD e (λH.c)

In code listings we will frequently omit the ; separator when it would occur at the end of a line.

We will also write c1 ; c2 for _ ← c1 ; c2 when the continuation c2 does not use its argument.

Correct typing. The typing constraints imposed by the raw_code definition enforce correct typing

for user-written code, guaranteeing that operations and their continuations are compatible. For

instance, let the continuation of get in (2) be f. Then f is only compatible with ℓ if f’s domain

matches the type of ℓ , i.e., f : type ℓ → raw_code A for some type A.

Syntax at work. We now illustrate our formal syntax in action. For this we restate the proce-

dure PRF0 .Eval(x) from Figure 4 more formally using raw_code and the various notations above:

Definition Eval (x : {0, 1}𝑛) : raw_code {0, 1}𝑛 : =

val_k_opt ← get k ;

if val_k_opt = ⊥ then

y <$ uniform {0, 1}𝑛 ;

put k : = Some y

else return () ;

assert (k ≠ ⊥) as kSome ;

let val_k : = getSome k kSome in

return prf (val_k , x) .

Here we mix constructors of raw_code with other Gallina terms such as the match construct. The

result of the match is made available to the continuation of the code as val_k via a use of bind

(under the guise of ‘val_k← ... ; ... ’).

3.2 Semantics of cryptographic code
When no external procedure calls (call o x k) appear in a piece of code c : code A, it is possible to

interpret c as a state-transforming probability subdistribution of type

Pr_code c : mem→ SD (A × mem)

This semantics is similar to that of CertiCrypt [26]. The type SD A denotes the collection of all

subdistributions over type A. Generally speaking, a subdistribution is a function 𝑑 : 𝐴 → R
assigning a certain probability 𝑑 (𝑎) to each 𝑎 : 𝐴 in such a way that

∫
𝐴
𝑑 ≤ 1. We use the

definition of subdistributions from mathcomp-analysis [4, 69], a Coq library from which we use

the foundations it gives to discrete probability theory. The semantics function Pr_code is defined

by recursion on the structure of c. Its definition basically boils down to providing an effect handler

that interprets state and probabilities in the monad mem→ SD(− × mem).

Using this subdistribution semantics, we can formalize the notation Pr[𝑏 ← 𝐺] from §2.1 as

follows: (i) extract the Run function from𝐺 ; (ii) apply Pr_code to it; (iii) run it on the initial memory;

(iv) extract the boolean component (first projection) from the resulting subdistribution. The final

20 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

result has type d : SD bool, the type of subdistributions for booleans, and we precisely define

Pr[𝑏 ← 𝐺] = d(𝑏) as the probability assigned to 𝑏 by this subdistribution on booleans.

3.3 Packages

package: MOD-CPA
mem: pk : option pubKey

counter : nat

Get_pk ():

return pk

Challenge(msg):

assert counter = 0

(pk, crnd , shs) ← Query()

counter ++

cmsg ← msg * shs

return (crnd , cmsg)

Fig. 13. Package MOD-CPA (repeated)

A raw package is a finite map from names to raw procedures, which are functions from some

A to raw_code B. An interface is a finite set of operation signatures (opsig), each specifying the

name, argument type, and result type of a procedure. A package is then a raw package RP to-

gether with an import interface I, an export interface E, and a set of locations L, such that

each procedure in RP uses only locations in L and imports only from I, and each procedure

name listed in E is implemented by a procedure in RP of the appropriate type. Consider for

instance the package MOD-CPA in Figure 13. The memory used, mem(MOD-CPA),6 consists of two
locations, pk : option pubKey and counter : nat. The import interface import(MOD-CPA) con-
tains a single procedure Query : unit→ G × G × G. There are two procedures implemented by

MOD-CPA, yielding an export interface export(MOD-CPA) containing Get_pk : unit→ option pubKey

and Challenge : G → option (G × G).
We define composition of packages, following the intuition of Brzuska et al. [40]. Given two

raw packages 𝑃 and 𝑄 we define their sequential composition 𝑄 ◦ 𝑃 by traversing 𝑄 and replacing

each call by the corresponding procedure implementation in 𝑃 . In case 𝑃 does not implement

the procedure for which we search, we use a dummy value instead. If the exports of 𝑃 match the

imports of𝑄—i.e., import(𝑄) ⊆ export(𝑃)—then no dummy value will be used. Concretely, during

the traversal each call p a 𝜅 node is replaced by

bind (P . p a) (λ x . link𝑃 (𝜅 x))

where link𝑃 stands for the recursive call of the function composing 𝑃 with the remaining code.

Experts will recognize this transformation as an algebraic effect handler [28], interpreting the free

monad for probabilities, state and the operations imported by 𝑃 to code in the free monad for

probabilities, state, and the operations imported by 𝑄 . We have mem(𝑄 ◦ 𝑃) = mem(𝑃) ∪ mem(𝑄),
import(𝑄 ◦ 𝑃) = import(𝑃) and export(𝑄 ◦ 𝑃) = export(𝑄).
6
Here we write mem(𝑃) to denote the memory footprint of package 𝑃 . In the Coq formalization, we instead use a relation on

a package and a set of memory locations stating that the packages only uses memory locations in the set but not necessarily

all of them. This is a technical detail and in the remainder of the paper we will stick to the mem as a function notation.

SSProve: A foundational framework for modular cryptographic proofs in Coq 21

Given two raw packages 𝑃 and 𝑄 we may define their parallel composition 𝑃 ∥ 𝑄 by aggregating

the implementations and delegating calls to the respective package providing it. This operation is

defined even if both packages have overlapping export signatures, in which case procedures in

𝑃 will be given priority. If their exports are disjoint, i.e., export(𝑃) ∩ export(𝑄) = ∅, then this

overlap situation does not happen and we have mem(𝑃 ∥ 𝑄) = mem(𝑃) ∪ mem(𝑄), import(𝑃 ∥ 𝑄) =
import(𝑃) ∪ import(𝑄) and export(𝑃 ∥ 𝑄) = export(𝑃) ∪ export(𝑄).

Private state. When formalizing composition in SSProve we do not impose any a priori restrictions

on the disjointness of the state that the composed packages manipulate. The essence of state

separation can be thus viewed as disjointness of state between the adversary A and the games

in a pair 𝐺01
. We therefore introduce the more economical assumption that only the adversary

has to have disjoint state in our security definitions and corresponding theorem statements (e.g.,

Theorem 2.4). Formally, an adversary A to game pair 𝐺01
is thus a distinguisher for 𝐺01

with

the additional assumption that mem(A) is disjoint from both mem(𝐺0) and mem(𝐺1). This extra
state assumption sets apart adversaries from distinguishers: we do not require that the state of a

distinguisher be disjoint from the game pair it tries to distinguish, and we still proved Lemma 2.2

and Lemma 2.3 from §2.1. The difference between distinguishers and adversaries manifests, for

instance, in the definition of perfect indistinguishability from the end of §2.1, which quantifies only

over adversaries. Distinguishers that are not adversaries could otherwise directly access the game

state and trivially distinguish the games we want to consider indistinguishable.

In the setting of SSProve, in which memory locations are global and not up to 𝛼-renaming, this

fine-grained state separation is helpful, since not only it minimizes the burden of formally proving

disjointness, but it also reduces the clutter in the statement of the final results.

Automation of side conditions. In our Coq formalization, we provide automation for the checking of

side conditions required to build packages and their compositions. This includes checking predicates

such as has_locs_and_imports to ensure that the implementation of a package is consistent with

the expected interface and memory footprint. There are limitations, however, to the scope of the

automation; specifically checking disjointness of location sets is currently quite basic. We plan to

improve this situation in future work.

3.4 Package laws
We formally proved the algebraic laws obeyed by packages as stipulated by Brzuska et al. [40].

Sequential composition is associative and parallel composition is commutative and associative, so

for any packages 𝑃1, 𝑃2, 𝑃3:

𝑃1 ◦ (𝑃2 ◦ 𝑃3) = (𝑃1 ◦ 𝑃2) ◦ 𝑃3
𝑃1 ∥ 𝑃2 = 𝑃2 ∥ 𝑃1

𝑃1 ∥ (𝑃2 ∥ 𝑃3) = (𝑃1 ∥ 𝑃2) ∥ 𝑃3 .

We furthermore relate the two package operations with an interchange law stating that

(𝑃1 ◦ 𝑃3) ∥ (𝑃2 ◦ 𝑃4) = (𝑃1 ∥ 𝑃2) ◦ (𝑃3 ∥ 𝑃4).

Commutativity of parallel composition only holds if the packages have indeed disjoint interfaces:

export(𝑃1) ∩ export(𝑃2) = ∅. The interchange law will only ask this of 𝑃3 and 𝑃4: export(𝑃3) ∩
export(𝑃4) = ∅.
The identity package ID𝐼 behaves as an identity for sequential composition when using the

correct interface:

IDexport(𝑃) ◦ 𝑃 = 𝑃 = 𝑃 ◦ IDimport(𝑃) .

22 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

Aswe have hinted before, these laws do not require disjointness of state, because they are syntactic

equalities. In fact, in SSProve they hold with respect to the usual equality of Coq (“propositional

equality”, written _ = _), without the need to define a separate notion of “code equality” [40].

4 PROBABILISTIC RELATIONAL PROGRAM LOGIC
Some of the SSP proof steps can be carried out at a high-level of abstraction relying on the package

formalism from §3. The justification of other steps like perfect indistinguishability requires, however,

a finer, lower-level analysis. As already pointed out in §2.2, we can perform such analyses in a

relational program logic, a deductive system in which it is possible to show that two pieces of code

𝑐0, 𝑐1 satisfy a certain relational specification, e.g. that they are equivalent.

In §4.1 we present some of the elementary rules constituting our program logic. We then sketch

a proof of Theorem 2.4, the link between the high-level reasoning based on the package laws to the

low-level one based on our probabilistic relational program logic in §4.2.

4.1 Selected rules
The logic we use is a variant of pRHL, a probabilistic relational Hoare logic introduced by Barthe

et al. [26]. The logic exposes relational judgments of the form

⊨ {{{(𝑚0,𝑚1). 𝜙}}} 𝑐0 ∼ 𝑐1 {{{(𝑚′0, 𝑎0), (𝑚′1, 𝑎1). 𝜓}}},

for which a basic intuition is provided in §2.2. Formally, 𝑐0 and 𝑐1 denote probabilistic stateful

code with return type 𝐴0 and 𝐴1 respectively, and the precondition𝑚0 : mem,𝑚1 : mem ⊢ 𝜙 : P
is a proposition with free variables𝑚0 and𝑚1 denoting the initial state of the memory (before

execution of the code). The postcondition 𝑚′
0
: mem, 𝑎0 : 𝐴0,𝑚

′
1
: mem, 𝑎1 : 𝐴1 ⊢ 𝜓 : P is a

predicate on the values returned by the executed code, which is parameterized by the variables

𝑚′
0
and𝑚′

1
representing the final state of the memory (after execution) and by the final values

𝑎0 and 𝑎1. As mentioned before, we will sometimes omit the quantifications when they are clear

from the context. We will also abuse notation and sometimes write e.g.,𝜓 (𝑚′
0
, 𝑎0) (𝑚′1, 𝑎1) for the

substitution of𝜓 with the given memories and values. The code fragments appearing in a judgment

are drawn from the free monad codeL,𝐼 of §3.1, and meet the further requirement that no oracle calls

call o x k appear in them (exactly as in §3.2). The precondition 𝜙 is defined to be a relation between

initial memories (for instance, 𝑚0 = 𝑚1). Similarly the postcondition 𝜓 relates final memories

and final results, intuitively obtained after the execution of 𝑐𝑖 on𝑚𝑖 . We describe how to assign a

formal semantics for such probabilistic judgments in §5.2. The semantics is based on the notion of

probabilistic couplings, already adopted by Barthe et al. [22]. In the remainder of this subsection

we describe a selection of our rules. The presentation does not contain all the rules employed in

practice by SSProve, nor does it provide a canonical presentation of these rules: some rules are

overlapping hence there are multiple ways to prove the same relational judgment, but the actual

derivation might be simpler with this redundancy. We return to the question of the organization of

rules after this presentation.

𝑐 : codeL 𝐴

⊨ {{{𝑚0 =𝑚1}}} 𝑐 ∼ 𝑐 {{{(𝑚′
0
, 𝑎0), (𝑚′1, 𝑎1). 𝑚′0 =𝑚′1 ∧ 𝑎0 = 𝑎1}}}

reflexivity

The reflexivity rule relates the code 𝑐 to itself when both copies are executed on identical initial

memories.

SSProve: A foundational framework for modular cryptographic proofs in Coq 23

𝑐0 : codeL0
𝐴0 𝑐1 : codeL1

𝐴1

𝜅0 : 𝐴0 → codeL0
𝐵0 𝜅1 : 𝐴1 → codeL1

𝐵1
⊨ {{{𝜙}}} 𝑐0 ∼ 𝑐1 {{{𝜒}}}

∀𝑎0 𝑎1. ⊨ {{{(𝑚0,𝑚1). 𝜒 (𝑚0, 𝑎0) (𝑚1, 𝑎1)}}} 𝜅0 (𝑎0) ∼ 𝜅1 (𝑎1) {{{𝜓}}}
⊨ {{{𝜙}}} 𝑎0 ← 𝑐0 ; 𝜅0 (𝑎0) ∼ 𝑎1 ← 𝑐1 ; 𝜅1 (𝑎1) {{{𝜓}}}

seq

The seq rule relates two sequentially composed commands using bind by relating each of the

sub-commands.

𝑐0 : codeL 𝐴0 𝑐1 : codeL 𝐴1

⊨ {{{𝐼}}} 𝑐0 ∼ 𝑐1 {{{(𝑚′0, 𝑎0), (𝑚′1, 𝑎1). 𝐼 (𝑚′0,𝑚′1) ∧𝜓 (𝑚′0, 𝑎0) (𝑚′1, 𝑎1)}}}
⊨ {{{𝐼}}} 𝑐1 ∼ 𝑐0 {{{(𝑚′1, 𝑎1), (𝑚′0, 𝑎0). 𝐼 (𝑚′0,𝑚′1) ∧𝜓 (𝑚′0, 𝑎0) (𝑚′1, 𝑎1)}}}

⊨ {{{𝐼}}} 𝑐0 ; 𝑐1 ∼ 𝑐1 ; 𝑐0 {{{(𝑚′0, 𝑎0), (𝑚′1, 𝑎1) . 𝐼 (𝑚′0,𝑚′1) ∧𝜓 (𝑚′0, 𝑎0) (𝑚′1, 𝑎1)}}}
swap

The swap rule states that if a certain relation onmemories 𝐼 is invariant with respect to the execution

of 𝑐0 and 𝑐1, then the order in which the commands are executed is not relevant. We used the swap
rule in §2.3 in order to swap two independent samplings; in that case the invariant 𝐼 consisted in

the equality of memories.

𝑐0, 𝑐
′
0
: codeL 𝐴0 𝑐1 : codeL′ 𝐴1

⊨ {{{𝜙}}} 𝑐0 ∼ 𝑐1 {{{𝜓}}} Pr_code 𝑐0 = Pr_code 𝑐′
0

⊨ {{{𝜙}}} 𝑐′
0
∼ 𝑐1 {{{𝜓}}}

eqDistrL

The eqDistrL rule allows us to replace 𝑐0 by 𝑐
′
0
when both codes have the same denotational

semantics as defined by Pr_code, in the sense of §3.2.

𝑐0 : codeL 𝐴0 𝑐1 : codeL 𝐴1

⊨ {{{(𝑚0,𝑚1). 𝜙 (𝑚0,𝑚1)}}} 𝑐0 ∼ 𝑐1 {{{(𝑚′0, 𝑎0), (𝑚′1, 𝑎1). 𝜓 (𝑚′0, 𝑎0) (𝑚′1, 𝑎1)}}}
⊨ {{{(𝑚1,𝑚0). 𝜙 (𝑚0,𝑚1)}}} 𝑐1 ∼ 𝑐0 {{{(𝑚′1, 𝑎1), (𝑚′0, 𝑎0). 𝜓 (𝑚′0, 𝑎0) (𝑚′1, 𝑎1)}}}

symmetry

The symmetry rule simply states that the symmetric judgment holds if the arguments of the pre-

and postconditions are swapped accordingly.

𝑐0, 𝑐1 : N→ codeL unit 𝑁 : N
∀𝑖 . ⊨ {{{𝐼 𝑖}}} 𝑐0 𝑖 ∼ 𝑐1 𝑖 {{{𝐼 (𝑖 + 1)}}}

⊨ {{{𝐼 0}}} for_loop 𝑁 𝑐0 ∼ for_loop 𝑁 𝑐1 {{{𝐼 (𝑁 + 1)}}}
for-loop

The for-loop rule relates two executions of for-loops with the same number of iterations by

maintaining a relational invariant through each step of the iteration.

𝑐0, 𝑐1 : codeL bool 𝑁 : N
⊨ {{{𝐼 (true, true)}}} 𝑐0 ∼ 𝑐1 {{{(𝑚′0, 𝑏0), (𝑚′1, 𝑏1). 𝑏0 = 𝑏1 ∧ 𝐼 (𝑏0, 𝑏1) (𝑚′0,𝑚′1)}}}

⊨ {{{𝐼 (true, true)}}}
do_while 𝑁 𝑐0

∼ do_while 𝑁 𝑐1
{{{(𝑚′

0
, 𝑏0), (𝑚′1, 𝑏1). 𝑏0 = 𝑏1 = false ∨ 𝐼 (false, false) (𝑚′

0
,𝑚′

1
)}}}

do-while

24 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

The do-while rule relates two bounded while loops with bodies 𝑐0 and 𝑐1. Every iteration preserves

a relational invariant on memories 𝐼 that depends on a pair of booleans, and the postcondition

also stipulates that 𝑐0 and 𝑐1 return the same boolean, i.e., 𝑏0 = 𝑏1. This rule follows the pattern of

the unbounded do-while rule defined for simple imperative programs by Maillard et al. [70]. We

believe that, with some additional work, their ideas could be used to also support unbounded loops

in SSProve (see §5.5 for details).

|𝐴|, |𝐵 | < 𝜔 𝑓 : 𝐴→ 𝐵 bijective ∀𝑥 . ⊨ {{{𝜙}}} 𝑐0 𝑥 ∼ 𝑐1 (𝑓 𝑥) {{{𝜓}}}
⊨ {{{𝜙}}} 𝑎 <$ uniform 𝐴 ; 𝑐0 𝑎 ∼ 𝑏 <$ uniform 𝐵 ; 𝑐1 𝑏 {{{𝜓}}}

uniform

The uniform rule relates sampling from uniform distributions on finite sets 𝐴 and 𝐵 that are in a

bijective correspondence. Note how it applies the bijection 𝑓 in the continuation on the right-hand

side.

𝐷 : Op
∑

𝑥∈ |𝐷 | 𝐷 (𝑥) = 1

⊨ {{{𝜙}}} 𝑐0 ∼ 𝑐1 {{{𝜓}}} 𝑦 ∉ freevar(𝑐0)
⊨ {{{𝜙}}} 𝑦 <$ 𝐷 ; 𝑐0 ∼ 𝑐1 {{{𝜓}}}

dead-sample

The code 𝑦 <$ 𝐷 ; 𝑐0 samples 𝑦 from the subdistribution 𝐷 . If 𝑦 is never used in 𝑐0, as indicated by

the last premise of the dead-sample rule, then we would like to argue that the sampling constitutes

“dead code” and can be ignored. This intuition only holds if 𝐷 is a proper distribution rather than a

subdistribution. For instance, if 𝐷 is the null distribution, the sampling behaves like “assert false”

and can certainly not be ignored. The premise

∑
𝑥∈ |𝐷 | 𝐷 (𝑥) = 1 ensures that 𝐷 is indeed a proper

distribution (also known as a “lossless subdistribution”). A uniform distribution over a non-empty

set would, for instance, constitute a proper distribution in this sense.

𝐷 : Op
∑

𝑥∈ |𝐷 | 𝐷 (𝑥) = 1

∀𝑦. ⊨ {{{𝜙}}} 𝑐0 𝑦 ∼ 𝑐1 {{{𝜓}}}
⊨ {{{𝜙}}} 𝑦 <$ 𝐷 ; 𝑐0 𝑦 ∼ 𝑐1 {{{𝜓}}}

sample-irrelevant

The sample-irrelevant rule has a similar flavor to dead-sample, as it too requires 𝐷 to be a

proper distribution. We assume that 𝑐0 𝑦 can be related to 𝑐1 for all values of 𝑦. In other words, the

choice of a particular value for 𝑦 is irrelevant for the pre- and postcondition at hand. Therefore,

sampling 𝑦 from a proper distribution 𝐷 will likewise allow us to conclude that 𝑐0 𝑦 is related to 𝑐1.

𝑏0, 𝑏1 : bool

⊨ {{{(𝑚0,𝑚1). 𝑏0 = 𝑏1}}} assert 𝑏0 ∼ assert 𝑏1 {{{(𝑚′0, 𝑎0), (𝑚′1, 𝑎1). 𝑏0 = true ∧ 𝑏1 = true}}}
assert

The assert rule relates two assert commands, as long as “𝑏0 = 𝑏1” holds before the commands.

Note that while the precondition is a predicate on initial memories, nothing prevents it form

talking about other things such as the booleans 𝑏0 and 𝑏1 quantified at the meta-level. It guarantees

“𝑏0 = true ∧ 𝑏1 = true” afterwards, ignoring the values 𝑎0 and 𝑎1 of type unit.

𝑏 : bool

⊨ {{{𝑏 = true}}} assert 𝑏 ∼ return () {{{𝑏 = true}}}
assertL

The one-sided assertL rule specifies the behavior an assert with a true boolean, by relating

it with return (). Note that if a code fragment 𝑐0 is shown to be related to an assertion failure

⊨ {{{True}}} 𝑐0 ∼ assert false {{{𝜓}}}, then 𝑐0 must necessarily contain an assertion failure as

SSProve: A foundational framework for modular cryptographic proofs in Coq 25

well, i.e., correspond to the null sub-distribution. Indeed the (sound) model of our program logic,

explained in §5, gives rise to a total correctness semantics [70] for assertion failures: assertion

failures only relate to other assertion failures.

𝑏0 : bool 𝜅0 : 𝑏0 = true→ code 𝐴0

𝑏1 : bool 𝜅1 : 𝑏1 = true→ code 𝐴1

𝑝𝑟𝑒 =⇒ 𝑏0 = 𝑏1
𝐻0 : 𝑏0 = true, 𝐻1 : 𝑏1 = true ⊨ {{{𝜙}}} 𝜅0 𝐻0 ∼ 𝜅1 𝐻1 {{{𝜓}}}

⊨ {{{𝜙}}} assert 𝑏0 as ℎ0 ; 𝜅0 ℎ0 ∼ assert 𝑏1 as ℎ1 ; 𝜅1 ℎ1 {{{𝜓}}}
assertD

The assertD rule allows reasoning about the dependent version of assert where the continuation
𝜅𝑖 is only well-defined if the assertion holds, as described in §3.1. As in the assert rule, the two
assertion conditions 𝑏0 and 𝑏1 may a priori be different. The precondition 𝜙 has to ensure that 𝑏0
and 𝑏1 are either both true or both false. The continuations 𝜅𝑖 are defined only in case the assertions

succeed. Under this assumption, here represented as the hypotheses 𝐻0 and 𝐻1, the continuations

𝜅𝑖 must be related for the same 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 as the composite statements “assert 𝑏𝑖 as ℎ𝑖 ; 𝜅𝑖 ℎ𝑖”.

The intuition for the validity of this rule is the following: if 𝑏𝑖 is true, assert 𝑏𝑖 as ℎ𝑖 is defined

as 𝜅𝑖 ℎ𝑖 and we appeal to the last premise. If 𝑏𝑖 is false, both composite statements fail and evaluate

to the null distribution.

ℓ : L 𝑟 : type ℓ → codeL 𝐴 𝑣 : type ℓ

⊨ {{{𝑚0 =𝑚1}}} put ℓ 𝑣 ; 𝑥 ← get ℓ ; 𝑟 (𝑥) ∼
put ℓ 𝑣 ; 𝑟 (𝑣) {{{(𝑚′

0
, 𝑎0), (𝑚′1, 𝑎1). 𝑚′0 =𝑚′1 ∧ 𝑎0 = 𝑎1}}}

put-get

The put-get rule states that looking up the value at location ℓ after storing 𝑣 at ℓ results in the

value 𝑣 . We also have a similar rule to remove a put right before another one at the same location,

and one for two get in a row. More interestingly, we provide one-sided rules for get and put which
update the pre- or postcondition accordingly.

ℓ : L0 𝜅 : type ℓ → codeL0
𝐴0 𝑐 : codeL1

𝐴1

∀𝑥 . ⊨ {{{(𝑚0,𝑚1). 𝜙 (𝑚0,𝑚1) ∧𝑚0 [ℓ] = 𝑥}}} 𝜅 (𝑥) ∼ 𝑐 {{{𝜓}}}
⊨ {{{𝜙}}} 𝑥 ← get ℓ ; 𝜅 (𝑥) ∼ 𝑐 {{{𝜓}}}

get-lhs

ℓ : L0 𝜅 : type ℓ → codeL0
𝐴0 𝑣 : type ℓ 𝑐 : codeL1

𝐴1

∀𝑚0,𝑚1. 𝜙 (𝑚0,𝑚1) =⇒𝑚0 [ℓ] = 𝑣 ⊨ {{{𝜙}}} 𝜅 (𝑣) ∼ 𝑐 {{{𝜓}}}
⊨ {{{𝜙}}} 𝑥 ← get ℓ ; 𝜅 (𝑥) ∼ 𝑐 {{{𝜓}}}

get-lhs-rem

With get-lhs, the left-hand side program is able to read from a memory location while we record

that information in the precondition. Dually, get-lhs-rem will recover that information from

the precondition. We also use the information in the preconditions when dealing with memory

invariants such as the one presented in Appendix A for the security proof of KEM-DEM.

The situation is slightly more complicated for one-sided writes because writing might break

a postcondition. Typically, writing on only one side when the postcondition ensures that both

26 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

memory locations are equal would (maybe temporarily) break said postcondition.

ℓ : L0 𝑣 : type ℓ 𝑐0 : codeL0
𝐴0 𝑐1 : codeL1

𝐴1

⊨ {{{(𝑚0,𝑚1). ∃𝑚. 𝜙 (𝑚,𝑚1) ∧𝑚0 =𝑚[ℓ ↦→ 𝑣] }}} 𝑐0 ∼ 𝑐1 {{{𝜓}}}
⊨ {{{𝜙}}} put ℓ 𝑣 ; 𝑐0 ∼ 𝑐1 {{{𝜓}}}

put-lhs

ℓ : L0 𝑣 : type ℓ 𝑐0 : codeL0
𝐴0 𝑐1 : codeL1

𝐴1

∀𝑚0 𝑚1. 𝜙 (𝑚0,𝑚1) =⇒ 𝜙 (𝑚0 [ℓ ↦→ 𝑣] ,𝑚1) ⊨ {{{𝜙}}} 𝑐0 ∼ 𝑐1 {{{𝜓}}}
⊨ {{{(𝑚0,𝑚1). ∃𝑚. 𝜙 (𝑚,𝑚1) ∧𝑚0 =𝑚[ℓ ↦→ 𝑣] }}} 𝑐0 ∼ 𝑐1 {{{𝜓}}}

restore-pre-lhs

Instead put-lhs modifies the precondition to state that the precondition 𝜙 was satisfied by a

previous memory state, and that the current memory state is the same except that ℓ now points to 𝑣 .

Typically, when 𝜙 is an invariant—such as one stating the equality of the two memories—we relax

the precondition temporarily until we reach a new state where it holds again, for instance by having

a similar write on the right-hand side. Rule restore-pre-lhs is such an example—although much

simplified—of how one can recover the precondition after a write, provided they can prove that the

precondition holds after the corresponding update of memory. In SSProve we in fact implement

a more general rule accounting for any number of writes on both the left- and right-hand sides.

Several put operations are performed, until one can show that the invariant is preserved by all

these memory updates.

More generally, we define handy tactics to apply these rules immediately, as well as performing

the necessary massaging of goals so that they become applicable. As such we have automation for

swapping multiple lines at once and checking that the swap was legal. Moreover, these tactics rely

on the hints mechanism of Coq and can thus be extended by the user.

Organization of the relational program logics rules. The rules of the relational program logic are

not canonically derived but a few guidelines have been used to come up with them. These guidelines

follow three independent criteria: the algebraic criterion, the historical criterion, and the practical

criterion. The algebraic criterion follows the idea that the effects employed in the programming

language can be modeled using algebraic structures, e.g., monads, and rules corresponding to the

standard combinators of this algebraic presentation can be naturally expressed [70]. In particular,

equationally presentedmonads such as the state monad, the exceptionmonad or the Giry probability

monad [58, 80] naturally induce reasoning rules corresponding to their equational theory [57].

The algebraic approach, however, falls short of providing a complete solution accounting for the

distinction between one-sided and two-sided rules specific to a particular effect—e.g., rules for get

and set when considering the state monad. For these rules, the historical presentation follows earlier

work on (x)pRHL [22, 26], providing both one-sided and two-sided rules. Finally, the pragmatics of

proving relational properties of programs in SSProve pushed for specific presentations of the rules,

well tailored to streamlined applications in practice, in particular when considering the specifics of

the Coq hosting environment, such as tactic language and incremental proof derivation through

interactive use of existential variables and subgoals generation. The redundancy between rules

created by these different approaches to relational program logic rules’ design is not an issue in

practice, since each of these rules is proved against the semantic model presented in §5 rather

than assumed axiomatically. The question of completeness of the rules is somehow side-stepped in

our setting by having an escape hatch using the relational semantics: in any case, if the rules we

provide are not suitable to prove a particular judgment, one can always fall back to the underlying

semantic model and prove an additional valid rule at that level. Ultimately, we validate the design

of the rules present in SSProve via case studies, ensuring that the chosen set of rules are indeed

enough to obtain concrete interesting results.

SSProve: A foundational framework for modular cryptographic proofs in Coq 27

4.2 Proof sketch for Theorem 2.4
If we denote by mem the type of memories, then a binary memory predicate

𝑚0 : mem,𝑚1 : mem ⊢ 𝜓 : P

holds on a pair of memories (ℎ0, ℎ1), written (ℎ0, ℎ1) ⊨ 𝜓 , when𝜓 (ℎ0, ℎ1) holds. Moreover, we say

that such predicate is stable on sets of locations L0 and L1 when for all ℎ0, ℎ1 such that (ℎ0, ℎ1) ⊨ 𝜓 ,
we have for all memory locations 𝑙 , such that 𝑙 ∉ L0 and 𝑙 ∉ L1, that

(1) ℎ0 [𝑙] = ℎ1 [𝑙].
(2) for all 𝑣 , (ℎ0 [𝑙 ↦→ 𝑣] , ℎ1 [𝑙 ↦→ 𝑣]) ⊨ 𝜓 .

In other words, on locations outside of L0 and L1,𝜓 must ensure equality of corresponding values

and nothing else.

When we want to prove that two packages with the same interface are perfectly indistinguishable,

we will assume that we have a stable predicate on the locations of the packages, and moreover,

that this predicate is an invariant on the different operations of the interface. This invariance of

the predicate is the reason why𝜓 appears both as a pre- and postcondition in Theorem 2.4. Notice

that stable predicates do not impose conditions on the intermediate states of each procedure in the

interface of Theorem 2.4, e.g. two related procedures may differ in their internal order of updates,

as long as the final results of computations are related.

Before giving the proof sketch for Theorem 2.4, we state a theorem that is also proved in Coq

and relates the probabilistic relational program logic with the probabilistic semantics.

Theorem 4.1. Given values 𝑎, 𝑏, if two pieces of code 𝑐0, 𝑐1 are such that

⊨ {{{𝜓}}} 𝑐0 ∼ 𝑐1 {{{𝜙}}},
𝜓 holds on the initial memories, and for all𝑚′

0
,𝑚′

1
, 𝑥 and 𝑦 we have that

𝜙 (𝑚′
0
, 𝑥) (𝑚′

1
, 𝑦) =⇒ (𝑥 = 𝑎 ⇐⇒ 𝑦 = 𝑏) ,

then we have
Pr[𝑎 ← 𝑐0] = Pr[𝑏 ← 𝑐1] .

We are now ready to outline the proof for Theorem 2.4.

Proof sketch of Theorem 2.4. We want to prove that for each adversaryA we have the equal-

ity 𝛼 (𝐺01) (A) = 0, i.e., ��
Pr

[
true← A ◦𝐺0

]
− Pr

[
true← A ◦𝐺1

] �� = 0.

Using the hypothesis and the fact that the predicate 𝜓 is a stable invariant, i.e., stable on sets of

locations mem(𝐺0) and mem(𝐺1), we perform an induction on the code of the procedure A .Run, to
establish

⊨ {{{𝜓}}}
(
A ◦𝐺0

)
.Run() ∼

(
A ◦𝐺1

)
.Run() {{{(𝑚′

0
, 𝑏0), (𝑚′1, 𝑏1). 𝑏0 = 𝑏1 ∧𝜓 (𝑚′0, 𝑏0) (𝑚′1, 𝑏1)}}}.

As the induction proceeds, the rules from §4.1 are used to prove each case. We illustrate the get

case, which after applying the seq rule with respect to the continuation, and using the inductive

hypothesis, reduces to the following judgment:

⊨ {{{𝜓}}} get l (λx.return x) ∼ get l (λx.return x) {{{(𝑚′
0
, 𝑣0), (𝑚′1, 𝑣1). 𝑣0 = 𝑣1 ∧𝜓 (𝑚′0, 𝑣0) (𝑚′1, 𝑣1)}}}

As 𝜓 is stable, we know that the result of get on the left and on the right will coincide (i.e.,

𝑚0 [𝑙] =𝑚1 [𝑙]), because 𝑙 ∉ L0 and 𝑙 ∉ L1 as 𝑙 is a location used in the adversary’s code (remember

we are performing induction on the adversary’s code), and we explicitly asked for the adversary

28 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

memory mem(A) to be disjoint from mem(𝐺0) and mem(𝐺1). As the memory was not changed, the

invariant𝜓 still holds on the final memory.

As the predicate𝜓 holds on the initial memories, and the postcondition 𝑏0 = 𝑏1 ∧𝜓 implies that

𝑏0 = 𝑡𝑟𝑢𝑒 ⇐⇒ 𝑏1 = 𝑡𝑟𝑢𝑒 , we know from Theorem 4.1 that

Pr

[
true← A ◦𝐺0

]
= Pr

[
true← A ◦𝐺1

]
,

and therefore the advantage is 0. □

5 SEMANTIC MODEL AND SOUNDNESS OF RULES
We build a semantic model validating the rules of the effectful relational program logic from §4.

The construction of the model builds upon an effect-modular framework [70], instantiating it with

probabilities, simple failures, and global state. We first give in §5.1 an overview of the framework of

Maillard et al. [70]. We then informally explain how we apply it in order to (1) obtain a model for a

probabilistic relational program logic in §5.2 and (2) enrich it with state in §5.3. The categorical

constructions underlying the framework are explained in §5.4, together with the extensions that we

need in this work. Finally, in §5.5 we compare this methodology to other approaches for modelling

relational program logics.

5.1 Relational effect observation
The aforementioned framework builds upon a monadic representation of effects to provide sound

semantics to a large class of relational program logics. As we shall see, this class notably contains

logics for reasoning about cryptographic code: code that can manipulate state and sample randomly

(see §4.1). A generic relational program logic 𝑟L is a deductive system with a relational judgment

⊨ 𝑐0 ∼ 𝑐1 {𝑤 } asserting that pairs of effectful code fragments 𝑐0, 𝑐1 behave according to a

given relational specification 𝑤 connecting the two computations. The exact shape of code and

specifications appearing in such a judgment can vary depending on what programming language

and logic are considered.

The recipe laid out by Maillard et al. [70] stems from the realization that not only effectful code

can be modelled using monads, but specifications can too, and we can build semantics for 𝑟L using

a so-called relational effect observation in three steps:

(1) Model the effects involved in the considered left and right programs as monads𝑀0 and𝑀1.

(2) Turn the collection of relational specifications𝑤 into a relational specification monad
(𝐴0, 𝐴1) ↦→𝑊 (𝐴0, 𝐴1) where 𝐴0 corresponds to the return type of the left program, and 𝐴1

the return type of the right program. The set𝑊 (𝐴0, 𝐴1) should be ordered by entailment of

specifications, written𝑤 ≤ 𝑤 ′.
(3) Finally, find an appropriate relational effect observation 𝜃𝐴0𝐴1

: 𝑀0𝐴0 ×𝑀1𝐴1 →𝑊 (𝐴0, 𝐴1)
mapping a pair of monadic computations in𝑀0𝐴0 ×𝑀1𝐴1 to a relational specification in

𝑊 (𝐴0, 𝐴1), and preserving the monadic features present on both sides.

Once a relational effect observation 𝜃 is specified we define a semantic judgment for 𝑟L as follows:

⊨𝜃 𝑐0 ∼ 𝑐1 {𝑤 } ⇐⇒ 𝜃𝐴0𝐴1 (𝑐0, 𝑐1) ≤ 𝑤
where 𝑐𝑖 : 𝑀𝑖 𝐴𝑖 and𝑤 :𝑊 (𝐴0, 𝐴1).

A typical example of a relational specification monad is the relational backward predicate

transformer monad BP(𝐴0, 𝐴1) := (𝐴0×𝐴1→P) → P, where P is the type of propositions. Intuitively
a backward predicate transformer𝑤 : BP(𝐴0, 𝐴1)maps a relational postcondition𝜙 to a precondition

𝑤 𝜙 sufficient to ensure 𝜙 on the result of the executions of code fragments 𝑐0, 𝑐1 respecting𝑤 (i.e.,

for which ⊨𝜃 𝑐0 ∼ 𝑐1 {𝑤 } for some 𝜃). The preorder on BP(𝐴0, 𝐴1) is given by reverse pointwise

implication. For two backward predicate transformers 𝑤1,𝑤2 : BP(𝐴0, 𝐴1), we say that 𝑤1 ≤ 𝑤2

SSProve: A foundational framework for modular cryptographic proofs in Coq 29

when ∀𝜙. 𝑤2 𝜙 ⇒ 𝑤1 𝜙 . Every pre-/postcondition pair (𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) can systematically be translated

into a single backward predicate transformer toBP(𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡):

toBP(𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) := 𝜆 (𝜙 : 𝐴0 ×𝐴1→P). 𝑝𝑟𝑒 ∧ ∀𝑎. 𝑝𝑜𝑠𝑡 𝑎 ⇒ 𝜙 𝑎 : BP(𝐴0, 𝐴1)

Note that BP does not form a monad: it takes two types 𝐴0, 𝐴1 as input but only returns one

(𝐴0 × 𝐴1→P) → P. Yet BP somehow still behaves as a monad because we can equip it with

bind and return operations satisfying equations akin to the standard monad laws. This is one

of the reasons why our precise definitions of relational specification monad and relational effect

observation are centered around the notion of relative monad instead, as discussed in [70] and

explained here in §5.4.

5.2 Effect observation for probabilities and failures
The technique above can be exploited to build a model for a probabilistic relational program logic.

We model probabilistic code using a free monad FPr over a probabilistic signature, reusing codeL,𝐼
mentioned in §3.1, where we require that only sampling operations are performed. This code can

be assigned a probabilistic semantics using the monad of subdistributions [13, 58], following the

track of §3.2, but ignoring considerations around state. This semantics assignment can in fact be

seen as a monad morphism 𝛿 : FPr → SD.

Specifications and effect observation. To model specifications for probabilistic code we use the rela-

tional specification monad BP of backward predicate transformers, defined above. The relational ef-

fect observation 𝜃Pr is based on the notion of probabilistic coupling. A coupling 𝑑 : coupling(𝑑0, 𝑑1)
of two subdistributions 𝑑0 : SD(𝐴0) and 𝑑1 : SD(𝐴1) is a subdistribution over 𝐴0 ×𝐴1 such that its

left and right marginals correspond to 𝑑0 and 𝑑1 respectively. For 𝑑𝑖 : SD(𝐴𝑖) two subdistributions

we define 𝜃 ′Pr : SD × SD→ BP by:

𝜃 ′Pr
𝐴0𝐴1 (𝑑0, 𝑑1) := 𝜆(𝜙 : 𝐴0 ×𝐴1 → P) . ∃(𝑑 : coupling(𝑑0, 𝑑1)) . ∀𝑎0 𝑎1 . 𝑑 (𝑎0, 𝑎1) > 0⇒ 𝜙 (𝑎0, 𝑎1).

We moreover turn the domain of 𝜃 ′Pr into a product of free monads by setting

𝜃Pr := 𝜃
′
Pr ◦ 𝛿2 : FPr × FPr → BP.

Intuitively, if 𝑤 : 𝐵𝑃 (𝐴0, 𝐴1) is obtained out of a (𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) pair, the semantic judgment ⊨𝜃𝑃𝑟

𝑐0 ∼ 𝑐1 {𝑤 } holds when one can find a coupling 𝑑 of 𝛿 (𝑐0), 𝛿 (𝑐1) whose support validates 𝑝𝑜𝑠𝑡
whenever 𝑝𝑟𝑒 is valid.

Our probabilistic model ⊨𝜃𝑃𝑟 𝑐0 ∼ 𝑐1 {𝑤 } validates state-free accounts of several rules of §4.1.
First, since the subdistribution monad is commutative (sampling operations always commute),

our semantics validates a state-free variant of the swap rule. Second, as it is often the case for an

arbitrary effect observation, symmetric rules like uniform involving similar effectful operations

on both sides (here: 𝑎 <$ uniform 𝐴) are validated as well. Third, failing assertions at type 𝐴 can

be modelled using the null subdistribution on 𝐴, and this interpretation allows us to validate the

assert rule in our model. Fourth, a state-free variant of the reflexivity rule can be established by

building, for any subdistribution 𝑠 , a coupling 𝑑 : coupling(𝑠, 𝑠) of 𝑠 with itself. Fifth, any relational

effect observation 𝜃 validates a rule like seq. Such a rule is essentially a syntactic formulation of

the fact that 𝜃 should preserve the monadic composition, which is true by definition.

The implementation of the relational effect observation 𝜃Pr in Coq depends on a mathematical

theory of couplings and of their interaction with probabilistic programs that we developed. This the-

ory relies internally upon the mathcomp-analysis library [3, 4], particularly on their formalization

of real numbers, subdistributions and discrete integrals.

30 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

5.3 Adding state
To extend this first model to stateful code and state-aware specifications, we adapt to our setting the

classical notion of state monad transformer [65]. A monad transformer maps monads 𝑀 to monads

T𝑀 and monad morphisms 𝜃 to monad morphisms T𝜃 . In particular, the state monad transformer

takes as input a monad𝑀 and a fixed set of states 𝑆 and produces a monad with underlying carrier

StT𝑀 (𝐴) = 𝑆 → 𝑀 (𝐴 × 𝑆) with additional ability to read and write elements of 𝑆 . Besides, a

monad transformer comes equipped with a family of liftings liftT : ∀𝑀. 𝑀 → T𝑀 coercing any

computation in the original monad𝑀 to a computation in the extended effectful environment T𝑀 .

We generalize this to specification monads and build modularly an effect observation 𝜃Pr,St on top

of 𝜃Pr :

𝜃 ′Pr,St := StT𝜃Pr : StT(F2Pr) (𝐴0, 𝐴1) → StT(BP) (𝐴0, 𝐴1)
using two sets of global states 𝑆0, 𝑆1 for the left and right, where:

StT(F2Pr) (𝐴0, 𝐴1) := 𝑆0 × 𝑆1 → FPr (𝐴0 × 𝑆0) × FPr (𝐴1 × 𝑆1),
StT(BP) (𝐴0, 𝐴1) := (𝐴0 × 𝑆0 ×𝐴1 × 𝑆1 → P) → 𝑆0 × 𝑆1 → P.

Following the definition of 𝜃Pr in §5.2, we further extend 𝜃 ′Pr,St by turning its domain into a product

of free monads F
2

Pr,St := FPr,St × FPr,St over a stateful and probabilistic signature. This extension is

obtained from 𝜃 ′Pr,St by precomposition with the mapping mentioned in §3.2:

𝜃Pr,St := 𝜃
′
Pr,St ◦ Pr_code2 .

Using the liftings liftStT provided by StT, we can build from any purely probabilistic relational

judgment ⊨𝜃Pr 𝑐0 ∼ 𝑐1 {𝑤 }, a relational judgment ⊨𝜃Pr,St 𝑐0 ∼ 𝑐1
{
liftStT𝑤

}
in the state-aware

model. This correspondence can be shown to form an embedding of logics: for every 𝑐0, 𝑐1,𝑤 free

from state manipulation, derivations of ⊨𝜃Pr,St 𝑐0 ∼ 𝑐1
{
liftStT𝑤

}
are in bijective correspondence

with derivations of ⊨𝜃Pr 𝑐0 ∼ 𝑐1 {𝑤 }. The proof of this latter fact is simplified by the modularity

of the construction. This modularity is moreover reflected in the way 𝜃Pr,St (𝑐0, 𝑐1) evaluates. A
first pass converts stateful operations of 𝑐0, 𝑐1 and yields state-passing probabilistic code. A second

pass interprets the remaining sampling operations and yields state-transforming subdistributions.

Lastly a third pass uses 𝜃𝑃𝑟 and yields the expected specification 𝜃Pr,St (𝑐0, 𝑐1) : StT(BP) (𝐴0, 𝐴1).
The semantic judgment ⊨𝜃Pr,St 𝑐0 ∼ 𝑐1 {𝑤 } obtained out of 𝜃Pr,St validates all of the rules of our

relational program logic (including §4.1).

5.4 Categorical foundations of the framework
Our semantics relies on the notion of relational effect observation (§5.1), and on our ability to

apply a suitable state transformer to them (§5.3). In this section, we provide categorical definitions

for those notions. Our Coq formalization of the semantics is essentially a formal version of the

theory laid out here. Note that Coq types and functions between them form a category that we call

Type. We will also use the category PreOrder of types equipped with a preorder structure (reflexive,

transitive relation), and monotone functions.

Computations and specifications as order-enriched relative monads. We are interested in modelling

probabilistic programs using monads. Yet, in our constructive setting probabilistic computations fail

to form a monad. Indeed, our Coq formalization relies on the mathcomp-analysis library which

defines the type of subdistributions SD(𝐴) (see §3.2) only when 𝐴 is a “choiceType”, that is, a
type equipped with an enumeration function for each of its decidable subtypes. This extra choice

structure is crucial to define a well-behaved notion of discrete integral on 𝐴, and consequently of

subdistribution on 𝐴. Beyond the discrepancy between the domain and codomain of SD, it is still

SSProve: A foundational framework for modular cryptographic proofs in Coq 31

possible to endow it with slightly modified versions of the expected bind and return operations,

that satisfy laws comparable to the standard monad laws. Fortunately, Altenkirch et al. [10] explain

well how these superficial obstructions due to a mismatch between the domain and codomain of a

monad-like structure can be solved using the closely related notion of a relative monad instead.

Definition 5.1 (Relative monad). Given a functor 𝐽 : I → C, a monad relative to 𝐽 (or 𝐽 -relative

monad) is a functor𝑀 : I → C equipped with “𝐽 -shifted” return and bind operations

return : ∀(𝑋 : I) . C(𝐽𝑋,𝑀𝑋)
bind : ∀(𝑋 𝑌 : I). C(𝐽𝑋,𝑀𝑌) → C(𝑀𝑋,𝑀𝑌)

satisfying 𝐽 -shifted versions of the return and bind monad laws:

bind𝑋,𝑋 (return𝑋) = id𝑀𝑋

bind𝑋,𝑌 (𝑘) ◦ return𝑋 = 𝑘

bind𝑋,𝑍 (bind𝑌,𝑍 (𝑙) ◦ 𝑘) = bind𝑌,𝑍 (𝑙) ◦ bind𝑋,𝑌 (𝑘)

As a trivial example, any monad𝑀 : C → C can be seen as a relative monad over the identity

functor IdC . Writing chTy for the category of choice types (choiceType), we are able to package

SD : chTy→ Type as a monad relative to the inclusion functor chTy→ Type forgetting the extra

choice structure. Similarly the probabilistic code monad FPr must actually be restricted to chTy and

only forms a relative monad FPr : chTy→ Type over the inclusion functor.

Regarding specifications, relational specification monads W fail to form monads as well. Indeed,

𝑊 : Type × Type→ PreOrder expects two types 𝐴0, 𝐴1 as input but only returns one𝑊 (𝐴0, 𝐴1),
which is moreover pre-ordered. Again, it turns out that relational specification monads𝑊 (including

BP) can be seen as relative monads, over the discrete product functor dprod mapping two types to

their product seen as a trivial preorder:

dprod : Type × Type → PreOrder

𝐴0, 𝐴1 ↦→ 𝐴0 ×𝐴1.

Specializing the definition of a relative monad with 𝐽 = dprod, the bind and return operations of

𝑊 take the following form:

returnW : 𝐴0 ×𝐴1 →𝑊 (𝐴0, 𝐴1)
bindW : (𝐴0 ×𝐴1 →𝑊 (𝐵0, 𝐵1)) →𝑊 (𝐴0, 𝐴1) →𝑊 (𝐵0, 𝐵1)

To soundly model relational program logics, the bindW operation of the relational specification

monad being used should be monotonic in both arguments. In our setting, we can in fact easily

express that condition by requiring all categorical constructions to be order-enriched [62, 63, 82].

For the sake of readability, we ignore the trivial considerations arising from this enrichment and

consider that all the constructions we are dealing with are implicitly order-enriched.

Summing up, in our setting:

• Pairs of computations are modelled by a product𝑀0 ×𝑀1 of Type-valued (order-enriched)

relative monads.

• Specifications are modelled using a relational specification monad𝑊 , i.e., a (order-enriched)

relative monad over the discrete product functor dprod : Type × Type→ PreOrder.

For instance, the domain and codomain of the relational effect observation 𝜃Pr defined in §5.2 form

respectively a product of Type-valued relative monads, and a relational specification monad.

dom(𝜃Pr) is FPr × FPr : chTy × chTy→ Type × Type
cod(𝜃Pr) is BP : Type × Type→ PreOrder

32 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

Relational effect observations. Consider𝑀0, 𝑀1 two Type-valued relative monads with base func-

tors 𝐽0, 𝐽1 respectively. Let𝑊 be a relational specification monad. The relative monads 𝑀0 ×𝑀1

and𝑊 organize in the following configuration:

dom(𝑀0) × dom(𝑀1) Type
2

Type
2

PreOrder

𝑀0×𝑀1

𝑊

𝐽0× 𝐽1 dprod

A relational effect observation 𝜃 : 𝑀0 ×𝑀1 →𝑊 is a collection of mappings

𝜃𝐴0𝐴1
: 𝑀0𝐴0 ×𝑀1𝐴1 →𝑊 (𝐽0𝐴0, 𝐽1𝐴1)

preserving the bind and return operations of𝑀0, 𝑀1 up to inequalities:

𝜃 (return𝑀0 𝑎0, return
𝑀1 𝑎1) ≤ return𝑊 (𝑎0, 𝑎1) (4)

𝜃 (bind𝑀0 𝑓0𝑚0, bind
𝑀1 𝑓1𝑚1) ≤ bind𝑊 (𝜃 ◦ (𝑓0, 𝑓1)) 𝜃 (𝑚0,𝑚1) (5)

An instance of relational effect observation is of course given by 𝜃Pr . Note that 𝜃Pr validates those

inequalities but fails to validate them as equalities.

In our development, relational effect observations 𝜃 : 𝑀0 ×𝑀1 →𝑊 are defined as special cases

of lax morphisms between order-enriched relative monads. We refer the interested reader to our

formalization
7
for a precise definition of this notion. In the remainder of this section, we explain

how to extend relative monads and lax morphisms between them with state. In particular, this

extension will apply to relational effect observations such as 𝜃Pr .

Transforming a relative monad with an appropriate left adjunction. It is a standard result that

every adjunction induces a monad and that every monad is induced by a family of adjunctions

(see [68], chapter 6). A similar kind of correspondence holds between left 𝐽 -relative adjunctions on

one side, and 𝐽 -relative monads on the other. The two following definitions appear in [10].

Definition 5.2 (Left 𝐽 -relative adjunction). Consider functors 𝐽 , 𝐿, 𝑅 in the following configuration

D

I C

𝐿 𝑅

𝐽

We say that 𝐿 and 𝑅 are 𝐽 -relative left and right adjoints respectively (𝐿 𝐽 ⊣ 𝑅) if there exists a
natural isomorphism ∀(𝑋 : I) (𝑌 : C). D(𝐿𝑋,𝑌) � C(𝐽𝑋, 𝑅𝑌). In that case, the composition 𝑅𝐿

turns out to be a 𝐽 -relative monad and is said to be induced by the left relative adjunction 𝐿 𝐽 ⊣ 𝑅.

Definition 5.3 (Kleisli adjunction of a relative monad). Let𝑀 : I → C be a 𝐽 -relative monad. We

define its Kleisli category Kl(𝑀) to have

• as objects, the objects of I.
• as morphisms, Kl(𝑀) (𝑋,𝑌) := C(𝐽𝑋,𝑀𝑌).

7https://github.com/SSProve/ssprove/blob/journal-version/theories/Relational/OrderEnrichedCategory.v#L379

https://github.com/SSProve/ssprove/blob/journal-version/theories/Relational/OrderEnrichedCategory.v#L379

SSProve: A foundational framework for modular cryptographic proofs in Coq 33

It is indeed a category exactly thanks to the monad laws of𝑀 . Moreover there exist functors 𝐿𝑀 , 𝑅𝑀

in the following configuration

Kl(𝑀)

I C

𝐿𝑀 𝑅𝑀

𝐽

𝑀

that form a 𝐽 -relative adjunction inducing𝑀 , that is,𝑀 = 𝑅𝑀𝐿𝑀 .

In this work we introduce the following notion.

Definition 5.4 (Transforming adjunction). Consider functors 𝐽 , 𝐿♭, 𝑅 in the following configuration:

I C

I C
𝐽

𝐽

𝐿♭ 𝑅

An adjunction 𝛼 : 𝐽𝐿♭ 𝐽 ⊣ 𝑅 is called a transforming adjunction.

If I is cartesian, C is cartesian closed, and 𝐽 preserves cartesian products, the following configu-

ration gives rise to a transforming adjunction 𝜎 : 𝐽 ◦ (− × 𝑆) 𝐽 ⊣ 𝑆 → −, which we suggestively

call “state-transforming adjunction”. Note that the 𝐽 -relative monad induced by this adjunction

𝑋 ↦→ 𝑆 → 𝐽 (𝑋 × 𝑆) is a 𝐽 -shifted version of a standard state monad.

I C

I C
−×𝑆 𝑆→−

𝐽

𝐽

Theorem 5.5 (Relative transformer). Given a 𝐽 -relative monad 𝑀 : I → C “sitting” on a
transforming adjunction 𝛼 : 𝐽𝐿♭ 𝐽 ⊣ 𝑅, the composition 𝑅𝑀𝐿♭ is also a 𝐽 -relative monad. We call it
the relative monad transformed by 𝛼 and denote it as T𝛼 𝑀 .

Proof Sketch. We can factorize 𝑀 through its Kleisli category as shown in Definition 5.3 to

obtain T𝛼 𝑀 := 𝑅𝑀𝐿♭ = 𝑅𝑅𝑀𝐿𝑀𝐿♭ and observe that 𝐿𝑀𝐿♭ 𝐽 ⊣ 𝑅𝑅𝑀 , meaning that T𝛼 𝑀 is the

relative monad induced by the latter adjunction. □

Adding state to a 𝐽 -relative monad 𝑀 consists in applying the above theorem with the state-

transforming adjunction 𝜎 defined above to obtain StT𝑀 := 𝑇𝜎 𝑀 . In particular, this is how the

domain and codomain of StT(𝜃Pr) from §5.3 are defined.

Transforming lax morphisms. In order to transform lax morphisms of relative monads (such as 𝜃Pr)

we follow the same methodology as in the previous paragraph. Various non-standard categorical

notions are at play under the hood: lax morphisms of left relative adjunctions, lax functors, and lax

natural transformations. Informally, let 𝜃 : 𝑀 →𝑊 be a lax morphism of relative monads. Let 𝛼 be

a transforming adjunction for both𝑀 and𝑊 . Then 𝜃 induces a lax morphism between the Kleisli

adjunctions of its domain and codomain:

Kl(𝜃) : (𝐿𝑀 𝐽 ⊣ 𝑅𝑀) −→ (𝐿𝑊 𝐽 ⊣ 𝑅𝑊)
Kl(𝜃) can then be pasted with an appropriate cell to obtain a lax morphism between the transformed

adjunctions, which ultimately induces a morphism T𝛼 𝜃 : T𝛼 𝑀 → T𝛼𝑊 between the transformed

34 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

relative monads. Adding state to a relational effect observation 𝜃 now consists in applying the

above with the state-transforming adjunction 𝜎 . This is how we can obtain StT(𝜃Pr) := T𝜎 𝜃Pr in a

modular way.

5.5 Comparing approaches to semantic models for relational program logics
We use the semantic framework of Maillard et al. [70] based on effect observations to obtain a

formal and foundational approach to relational program logics for cryptographic code. In this

section, we compare this methodology to other approaches for modelling relational program logics.

The Foundational Cryptography Framework (FCF) [78] develops machine-checked proofs of

cryptographic code in the Coq proof assistant. Computations are modelled as elements of a free

monad, then interpreted as distributions. This denotational model is subsequently used to derive a

program logics using couplings. The approach we take is similar, but we paid special attention to

the intermediate monadic structures involved. For instance, FCF distinguishes the type of simple

computations Comp𝑅 with result value in 𝑅 from the type of computations with access to some

oracle OracleComp 𝐼 𝑂 𝑅. The latter provides operations to query an oracle with a given value in

𝐼 and obtain results in 𝑂 of an oracle call that are not found in simple computations. We rely on

the genericity of free monads at the level of packages to encode both the simple computations and

computations with oracles in a single uniform type of code, using the parameterized operations to

provide oracle queries for instance. State passing is done explicitly in FCF, while we prefer a more

abstract presentation using a state monad transformer. As a result, we obtain a conceptually com-

fortable decomposition of our computational monads and specifications, at the price of additional

work to define the few components that we need for verification of cryptographic code.

Although the implementation of EasyCrypt does not have a proper foundational backend

per se, many rules of its probabilistic relational Hoare logic (pRHL) were proved sound in Coq

in a project called XHL with respect to a model [94], parts of which have been merged into

mathcomp-analysis [4]. Our own development relies on these very same definitions and lemmas

for the probabilistic aspect of the relational specification monads and the underlying theory of

couplings. Our contribution here, forced by the organization of the framework of Maillard et al. [70],

is to show formally that the various lemmas proved in the library indeed build instances of the

monadic abstractions that are not explicated in the original development. Amongst the technical

difficulties that appeared in that operation, we should mention the fact that distributions are only

built-in mathcomp-analysis for types equipped with a certain choice structure, reflecting the

constructive nature of Coq. However, we cannot endow distributions with such a choice structure,

and in particular, distributions do not form monads, but they do form relative monads over the

functor forgetting the choice structure (see §5.4). Note that although the definition of the semantic

judgment ⊨𝜃Pr,St 𝑐0 ∼ 𝑐1 {𝑤 } can seem abstract at first, it ultimately reduces to a direct formulation

equivalent to the one underlying XHL.

CertiCrypt is a predecessor of EasyCrypt embedded directly in Coq and our foundational ap-

proach is closer in spirit to CertiCrypt than to its successor. CertiCrypt’s Coq code employs an

elaborate definition of probabilistic Relational Hoare Logic judgments in terms of approximate

couplings, based on the ALEA library [13, 77], which directly offers support for bounding the

distance between the distributions of two probabilistic programs. It also features a memory model

distinguishing between local and global variables, providing the ability to give a direct semantics

for first-order procedure calls with local state in the form of “stack frames”. This memory model

could be employed easily in our account of the state relative monad transformer.

CertiCrypt, EasyCrypt and FCF provide some support for unbounded while loops, ultimately

relying at the semantic level on the fact that distributions take values in a complete lattice, namely

the real numbers, and using standard fixpoint theorems to obtain an interpretation of arbitrary

SSProve: A foundational framework for modular cryptographic proofs in Coq 35

loops. Our semantic account could also support such an extension, as witnessed by the semantics

Maillard et al. [70] construct for a simple Imp language with unbounded loops.

While a direct ad-hoc definition of the model is comparatively simpler to implement, our categor-

ical approach aims to provide more modularity, with the potential to account for multiple effects.

This modular approach makes explicit that the model can be restricted to one validating a solely

probabilistic program logic (§5.2). Moreover, it should be possible to extend our stateful model

with other effects using a similar range of algebraic techniques. However, as things stand now,

incorporating new effects in our relational program logic and its associated semantics can only be

done on a case by case basis. Developing and using the framework required a high proof effort,

in particular to manipulate the various layers of abstractions when proving concrete statements,

such as the soundness of rules of the relational program logics specific to the effects involved.

Further engineering work would be needed to make efficient use of the factorisation provided by

abstraction and bring this approach to a competitive level compared to the simpler direct approach

of FCF [78] and XHL [94].

6 CASE STUDY: KEM-DEM
In order to better demonstrate the practicality of our tool we formalized a more involved public

key encryption scheme, KEM-DEM originally proposed by Cramer and Shoup [48], and used

for instance in the CryptoBox protocol [32]. KEM-DEM consists in the composition of a key

encapsulation mechanism (KEM) and a data encryption mechanism (DEM), and it can be proved to

be indistinguishable from random under chosen ciphertext attacks (IND-CCA), as long as both the

KEM and DEM are also IND-CCA schemes.

Our formalization of KEM-DEM showcases high-level SSP arguments that are not present in

our previous examples such as parallel composition, the identity package, and the interchange law.

Furthermore, we make a more extensive use of our probabilistic relational framework. In particular,

we have to account for more interesting invariants than the mere equality of state we were using

previously.

Our mechanized proof of KEM-DEM faithfully follows the single-instance security proof done

on paper by Brzuska et al. [40, Section 4]. In fact, while conducting the proof in SSProve, we were

able to find—in conjunction with the authors of [40]—a flaw in their argument which has led them

to propose a revised version of their theorem and its corresponding proof. This section describes

the revised proof, which we formalized in SSProve.

6.1 The KEY package
The KEM-DEM protocol involves the use of a symmetric key to encrypt the actual data that is

going to be sent. The KEY package is used for generating, storing and accessing such a key.

All our statements, as well as the KEY package itself, are parameterized over a type of symmetric

keys and distribution keyD for generating them. In this respect we generalize [40], which uniformly

samples over bit-strings of a given length. We give the KEY package in Figure 14.

Next we consider packages that may rely on KEY either for storage/generation or for access

of an otherwise set key; we will later see the KEM and DEM as instances of those. We call the

former keying and the latter keyed games. More formally, a keying game K𝑏 is given by a core

keying game CK𝑏 with import(CK0) = {Set}, and import(CK1) = {Gen}, and Get ∉ export(CK𝑏),
while a keyed game 𝐷𝑏

is given by a core keyed game CD𝑏 such that import(CD𝑏) = {Get}, and
Gen ∉ export(CD𝑏). They are graphically represented in Figure 15 (where we write Gen/Set to

36 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

package: KEY
mem: k_loc : option key

Gen():

k ← get k_loc

assert k = ⊥ ;

k <$ keyD

put k_loc := Some k

Set(k):

k' ← get k_loc

assert k' = ⊥
put k_loc := Some k

Get():

k ← get k_loc

assert (k ≠ ⊥) as kSome

return (getSome k kSome)

KEY

Gen

Set

Get

Fig. 14. KEY package

KEY
Gen/SetCK

b
⋮

K
b

Get

KEY

Gen

CD
b

⋮

D
b

Get

Fig. 15. Keying and keyed games

indicate that the import is either Gen or Set depending on the secret bit 𝑏) and defined as follows:

K𝑏 = (CK𝑏 ∥ ID{Get}) ◦ KEY
D𝑏 = (ID{Gen} ∥ CD𝑏) ◦ KEY

The import and export interface conditions stated above ensure that these packages are meaningful.

As we will see, we will define the KEM package as a core keying game, and the DEM package as
a core keyed game. From that fact alone we will be able to derive security bounds on games that

combine them as evidenced by the following lemma.

SSProve: A foundational framework for modular cryptographic proofs in Coq 37

Lemma 6.1 (Single key). Given a keying game pair 𝐾01 and a keyed game pair 𝐷01 as above, we
have the following inequalities for any distinguisher D:

𝛼 ((CK0 ∥ CD0) ◦ KEY, (CK1 ∥ CD1) ◦ KEY) (D) ≤
𝛼 (K01) (D ◦ (IDexport(CK) ∥ CD0)) +
𝛼 (D01) (D ◦ (CK1 ∥ IDexport(CD)))

𝛼 ((CK0 ∥ CD0) ◦ KEY, (CK0 ∥ CD1) ◦ KEY) (D) ≤
𝛼 (K01) (D ◦ (IDexport(CK) ∥ CD0)) +
𝛼 (D01) (D ◦ (CK1 ∥ IDexport(CD))) +
𝛼 (K01) (D ◦ (IDexport(CK) ∥ CD1))

Proof. We once again make use of Lemma 2.2 and Lemma 2.3 for game-hopping but also of the

interchange and identity laws. We will represent the sequence graphically. The packages that we

consider are represented in Figure 16 with potentially different instances of 𝑏 and 𝑐 . For the first

inequality we want to relate the figure where 𝑏 = 0 and 𝑐 = 0 to the case where 𝑏 = 1 and 𝑐 = 1. To

accomplish this we perform the reductions found in Figure 17 which correspond to applications

of the identity and interchange laws to the package of Figure 16, and thus they represent equal

packages. For instance, we first change CK0 to CK1 in (CK0 ∥ CD0) ◦ KEY by “pushing” CD0 to the left

(i.e., using the reduction on top), meaning we obtain equal package (IDexport(CK) ∥ CD0) ◦ K0. We

then hop to (IDexport(CK) ∥ CD0) ◦ K1, incurring the term 𝛼 (K01) (D ◦ (IDexport(CK) ∥ CD0)) in the

inequality, and then proceed back to (CK1 ∥ CD0) ◦ KEY by doing the inverse of the reduction. The

whole proof proceeds in a similar way. The second inequality is a consequence of the first one

where we additionally de-idealize the core keying package (CK1 goes back to CK0), hence the extra
term in the inequality. □

KEY

Gen/Set

CD
c

⋮

CK
b

⋮

Get

Fig. 16. Keying and keyed games combined

KEY

Gen/Set

CD
c

⋮

CK
b

⋮

Get

KEY

Gen/Set
CK

b

CD
c

⋮

⋮ Get

Fig. 17. Reductions for the keying and keyed games

38 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

6.2 KEM and DEM

In order to be as general as possible, we will assume we are given KEM and DEM schemes. As

stated earlier, the KEM will generate a symmetric key and encrypt it using an asymmetric scheme.

The DEM will then use that symmetric key to encrypt the data to be sent. To that effect we assume

we are given a public and secret key spaces pkey and skey, together with a relation pkey_pair to

tell which secret key correspond to which public key. We furthermore assume a symmetric key

space key and an encrypted symmetric key space ekey together with distributions keyD and ekeyD
on them.

8
Finally we also assume that we have a type of ciphers and a type of plaintexts together

with a distinguished null plaintext (which we will write as 0), as well as a distribution on ciphers

cipherD. In the original SSP paper [40], these distributions are uniform distributions and these

types are described using bit-strings but we decided for a more abstract approach, not only because

it is slightly more general, but also because things appear simpler as we do not have to deal with

low-level concerns.

A KEM, 𝜂, is given by the following:

(1) 𝜂.kgen, a—state-preserving9 and typically sampling—procedure which generates a valid

public/secret key pair according to the pkey_pair relation;

(2) 𝜂.encap, a state-preserving procedure which takes a public key pk and generates a symmetric

key together with its asymmetric encryption with pk;
(3) 𝜂.decap, a deterministic function—represented by a pure function in Coq—which returns a

symmetric key from its encryption and the secret key.

We additionally require that with an appropriate secret key, the original symmetric key can be

recovered by applying 𝜂.decap to the encrypted key returned by 𝜂.encap. This specification, and
the specification of 𝜂.kgen are handled in our formalization using the diagonal of our probabilistic

relational program logic, i.e., we ensure that property 𝜑 holds of 𝑐 by verifying that the judgment

∀𝜓 . ⊨ {{{𝜓}}} 𝑐 ∼ 𝑐 {{{(𝑚′
0
, 𝑎0), (𝑚′1, 𝑎1). 𝜓 (𝑚′0,𝑚′1) ∧ 𝑎0 = 𝑎1 ∧ 𝜑 (𝑎0)}}} holds.

A DEM, 𝜃 , is given by the following:

(1) 𝜃 .enc, a deterministic encryption function taking a symmetric key to turn a plaintext into a

cipher;

(2) 𝜃 .dec, a deterministic decryption function.

Note that we do not need to know that 𝜃 .dec and 𝜃 .enc are inverses of each other to conduct the

security proof so we do not require it. Of course, the DEM schemes of interest will verify this

property as well.

For the remainder of this section, we assume that we are given a KEM 𝜂 and a DEM 𝜃 . Using

them we define the KEM𝑏 and DEM𝑏 games in Figure 18
10
. These games are then used respectively as

core keying and keyed games in the KEM-CCA01 and DEM-CCA01 game pairs (represented in Figure 19):

KEM-CCA𝑏 = (KEM𝑏 ∥ ID{Get}) ◦ KEY DEM-CCA𝑏 = (ID{Gen} ∥ DEM𝑏) ◦ KEY
We finally combine 𝜂 and 𝜃 to form a public-key encryption (PKE) in the form the PKE-CCA01 game

pair defined in Figure 20 and Figure 22.

6.3 Security of the KEM-DEM construction
To state our PKE security theorem, we also define in Figure 21 and Figure 23 the MOD-CCA package

which has the same exports as PKE-CCA01, but which will eventually be composed sequentially with

8
The same keyD is used in the KEY package.

9
Observationally, the state must be the same after execution of the procedure.

10
We abuse if notation here to match with our examples in §2. Formally, c being set in the two branches can be understood

as the whole if computing the value that is then stored in c.

SSProve: A foundational framework for modular cryptographic proofs in Coq 39

package: KEM𝑏

mem: pk_loc : option pkey
sk_loc : option skey
ek_loc : option ekey

Kemgen ():

sk ← get sk_loc

assert sk = ⊥
(pk, sk) ← 𝜂.kgen
put pk_loc := Some pk

put sk_loc := Some sk

return pk

Encap():

pk ← get pk_loc

assert pk ≠ ⊥ as pkSome

let pk := getSome pk pkSome in

ek ← get ek_loc

assert ek = ⊥
(k, ek) ← 𝜂.encap(pk)
put ek_loc := Some ek

if b then Set(k) else Gen()

return ek

Decap(ek '):

sk ← get sk_loc

assert sk ≠ ⊥ as skSome

let sk := getSome sk skSome in

ek ← get ek_loc

assert ek ≠ Some ek '

return 𝜂.decap(sk,ek ')

package: DEM𝑏

mem: c_loc : option cipher

Enc(msg):

c ← get c_loc

assert c = ⊥
k ← Get()

if b then

c ← 𝜃 .enc(k,msg)
else

c ← 𝜃 .enc(k,0)
put c_loc := Some c

return c

Dec(c'):

c ← get c_loc

assert c ≠ Some c'

k ← Get()

return 𝜃 .dec(k,c')

KEM

Kemgen

E ncap

b Gen/Set

Decap

DEM
Enc

Dec

b Get

Fig. 18. KEM𝑏 and DEM𝑏 games

KEY
Gen/SetKEM

b

KEM-CCA
b

Kemgen

Encap

Decap

Get

KEYGet

Gen

DEM
b

DEM-CCA
b

Enc

Dec

Fig. 19. KEM-CCA𝑏 and DEM-CCA𝑏 games

KEM, DEM and KEY to form an auxiliary game, featured in Figure 24 and defined as:

AUX𝑏 = MOD-CCA ◦ (KEM0 ∥ DEM𝑏) ◦ KEY.

40 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

package: PKE-CCA𝑏

mem: pk_loc : option pkey
sk_loc : option skey
c_loc : option cipher

ek_loc : option ekey

Pkgen():

sk ← get sk_loc

assert sk = ⊥
(pk, sk) ← 𝜂.kgen
put pk_loc := Some pk

put sk_loc := Some sk

return pk

Pkenc(msg):

pk ← get pk_loc

assert pk ≠ ⊥ as pkSome

let pk := getSome pk pkSome in

ek ← get ek_loc

assert ek = ⊥
c ← get c_loc

assert c = ⊥
(k, ek) ← 𝜂.encap(pk)
if b then

c ← 𝜃 .enc(k, msg)

else

c ← 𝜃 .enc(k, 0)

put ek_loc := Some ek

put c_loc := Some c

return (ek, c)

Pkdec(ek', c'):

sk ← get sk_loc

assert sk ≠ ⊥ as skSome

let sk := getSome sk skSome in

ek ← get ek_loc

c ← get c_loc

assert (

(ek, c) ≠ (Some ek ', Some c')

)

k ← 𝜂.decap(sk, ek ')

return 𝜃 .dec(k, c')

Fig. 20. PKE-CCA𝑏 game

package: MOD-CCA
mem: pk_loc : option pkey

c_loc : option cipher
ek_loc : option ekey

Pkgen():

pk ← get pk_loc

assert pk = ⊥
Kemgen ()

Pkenc(msg):

pk ← get pk_loc

assert pk ≠ ⊥
ek ← get ek_loc

assert ek = ⊥
c ← get c_loc

assert c = ⊥
ek ← Encap()

put ek_loc := Some ek

c ← Enc(msg)

put c_loc := Some c

return (ek, c)

Pkdec(ek', c'):

pk ← get pk_loc

assert pk ≠ ⊥
ek ← get ek_loc

c ← get c_loc

assert (

(ek, c) ≠ (Some ek ', Some c')

)

if ek = Some ek ' then

msg ← Dec(c')

else

k' ← Decap(ek ')

msg ← 𝜃 .dec(k', c')

return msg

Fig. 21. MOD-CCA game

SSProve: A foundational framework for modular cryptographic proofs in Coq 41

Fig. 22. PKE-CCA𝑏 game graphically

MOD-CCA

Pkgen

Kemgen

Enc

Pkenc

Pkdec

Dec

Encap

Decap

Fig. 23. MOD-CCA package graphically

MOD-CCA

Pkgen

Kemgen

Enc

KEM
0 Set

DEM
b Get

KEY
Pkenc

Pkdec

Encap

Decap

Dec

Fig. 24. AUX𝑏 game construction

The security theorem that we formalize is then the following.

Theorem 6.2. For every adversary to PKE-CCA01 and AUX01 A we have the following inequality:

𝛼 (PKE-CCA01) (A) ≤
𝛼 (KEM-CCA01) (A ◦ MOD-CCA ◦ (IDexport(KEM) ∥ DEM0)) +
𝛼 (DEM-CCA01) (A ◦ MOD-CCA ◦ (KEM1 ∥ IDexport(DEM))) +
𝛼 (KEM-CCA01) (A ◦ MOD-CCA ◦ (IDexport(KEM) ∥ DEM1))

Note here that unfortunately, one detail of the proof leaks into the theorem statement: the

adversary is also forbidden from using the state of the intermediary game pair AUX01. Concretely,
that means an adversary is not allowed to use k_loc in addition to the locations of PKE-CCA01.

Proof of Theorem 6.2. We use Lemma 2.2 to establish the inequality

𝛼 (PKE-CCA01) (A) ≤
𝛼 (PKE-CCA0, MOD-CCA ◦ (KEM0 ∥ DEM0) ◦ KEY) (A) +
𝛼 (MOD-CCA ◦ (KEM0 ∥ DEM0) ◦ KEY, MOD-CCA ◦ (KEM0 ∥ DEM1) ◦ KEY) (A) +
𝛼 (MOD-CCA ◦ (KEM0 ∥ DEM1) ◦ KEY, PKE-CCA1) (A)

(6)

which corresponds to the following if we fold the definition of AUX:

𝛼 (PKE-CCA01) (A) ≤
𝛼 (PKE-CCA0, AUX0) (A) +
𝛼 (MOD-CCA ◦ (KEM0 ∥ DEM0) ◦ KEY, MOD-CCA ◦ (KEM0 ∥ DEM1) ◦ KEY) (A) +
𝛼 (AUX1, PKE-CCA1) (A)

(7)

We then show that PKE-CCA𝑏 and AUX𝑏 are perfectly indistinguishable, using Theorem 2.4, i.e.,

we show they define equivalent procedures using an appropriate invariant. We detail the invariant

and the code comparisons in Appendix A. We now proceed with rest of the proof of Theorem 6.2.

Since PKE-CCA𝑏 is perfectly indistinguishable from AUX𝑏 , the inequality (7) simplifies to

𝛼 (PKE-CCA01) (A) ≤ 𝛼 (MOD-CCA ◦ (KEM0 ∥ DEM0) ◦ KEY, MOD-CCA ◦ (KEM0 ∥ DEM1) ◦ KEY) (A) . (8)

Using Lemma 2.3 we replace the right-hand side to derive

𝛼 (PKE-CCA01) (A) ≤ 𝛼 ((KEM0 ∥ DEM0) ◦ KEY, (KEM0 ∥ DEM1) ◦ KEY) (A ◦ MOD-CCA). (9)

42 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

This (right-hand) upper bound corresponds to an instance of the left-hand side of the second

inequality of Lemma 6.1 using A ◦ MOD-CCA as distinguisher, meaning we have the inequality

𝛼 ((KEM0 ∥ DEM0) ◦ KEY, (KEM0 ∥ DEM1) ◦ KEY) (A ◦ MOD-CCA) ≤
𝛼 (KEM-CCA01) (A ◦ MOD-CCA ◦ (IDexport(KEM) ∥ DEM0)) +
𝛼 (DEM-CCA01) (A ◦ MOD-CCA ◦ (KEM1 ∥ IDexport(DEM))) +
𝛼 (KEM-CCA01) (A ◦ MOD-CCA ◦ (IDexport(KEM) ∥ DEM1)).

(10)

We thus conclude using transitivity of (9) and (10). □

7 CASE STUDY: Σ-PROTOCOLS
Σ-protocols form an important class of honest-verifier zero-knowledge protocols [50, 61]. A Σ-
protocol is defined on a relation R for which a prover, in zero-knowledge, can prove it knows a

witness𝑤 for a public statement ℎ such that the relations R ℎ 𝑤 holds.

In this section, we show how we can define the class of Σ-protocols in SSProve. This is not

meant as an exhaustive treatment of Σ-protocols in SSP. We were mainly driven by comparison of

SSProve to CryptHOL, in particular with the work of Butler et al. [42]. We prove the security of a

transformation by converting a Σ-protocol in our class of protocols into a commitment scheme. A

commitment scheme is a cryptographic primitive allowing anyone to publicly commit themselves

to a value without revealing the value itself. Moreover, the party committing to the message can

freely reveal the message at a later time with the guarantee that the value revealed is the value

publicly committed to earlier.

Finally, we conclude the section by proving Schnorr’s protocol [87] to be a member of the class

of Σ-protocols and prove concrete security bounds. Schnorr’s protocol allows a prover to convince

a verifier that it knows the discrete logarithm of a group element.

prover(ℎ,𝑤) verifier(ℎ)

𝑎 ← Init(ℎ,𝑤)
𝑎−−−−−−→

sample challenge

𝑒←−−−−−
𝑧 ← Response(ℎ,𝑤, 𝑎, 𝑒)

𝑧−−−−−→ Verify(ℎ, 𝑎, 𝑒, 𝑧)

Fig. 25. Σ-Protocol overview

The general flow of a Σ-protocol can be seen in Figure 25. First, the prover uses the secret

information𝑤 to compute a message 𝑎 which is sent to the verifier. Second, the verifier samples

a challenge 𝑒 uniformly at random from some challenge space and sends it to the prover. Third,

the prover computes a response 𝑧 based on the secret information, the message, and the challenge.

The response is then sent to the verifier. Finally, the verifier takes the public information, message,

challenge, and response and checks whether it is convinced that the prover knows the secret.

The combination of the message, challenge, and response is commonly referred to as the transcript
of the protocol.

We say that a Σ-protocol is secure when both of the following hold.

(1) There exists an efficient simulator which, given the public information and a fixed challenge,

can produce a transcript that is indistinguishable from a real execution of the protocol with

SSProve: A foundational framework for modular cryptographic proofs in Coq 43

the same challenge. This is commonly referred to as the protocol being special honest-verifier
zero-knowledge.

(2) Given two accepting transcripts with the same initial message and different challenges, the

witness for the relation can be reconstructed. This property is known as special soundness.

7.1 The SIGMA scheme
Σ-protocols have been formalized before. Butler et al. [42] formalize a number of Σ-protocols in
CryptHOL, and prove compositional properties of these protocols. Sidorenco et al. [90] formalize

Σ-protocols in EasyCrypt, and combine them with a formalization of multi-party computation

(MPC) to formalize a, so-called, MPC-in-the-head protocol.

For our representation of Σ-protocols, we build on both these formalizations to define the SIGMA
scheme and its corresponding security properties.

(1) Σ.Init, a non-deterministic procedure generating a message and state given access to the

witness and public statement.

(2) Σ.Response, a procedure generating a response from a state, witness, public statement,

previous message, and any challenge.

(3) Σ.Verify, a deterministic procedure returning a boolean based on all information sent in the

protocol.

(4) Σ.Simulate, a function computing a tuple (message, response) from a public statement and

any challenge.

(5) Σ.Extract, a procedure that given two transcripts either outputs a witness or fails.

Additionally, we assume uniform distributions, 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝐷 and 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝐷 , for sampling chal-

lenges and witnesses of the relation, respectively.

Security is defined as several games interacting utilizing the SIGMA scheme. The various security

games are shown in Figure 26 and Figure 27 .

For any game which depends on a Σ scheme, we denote the scheme as follows: P𝑆 denotes the

P game depending on the Σ scheme 𝑆 . For brevity, the scheme is sometimes omitted from the

notation.

Definition 7.1. The special honest-verifier zero-knowledge security of an instantiation of a SIGMA
scheme 𝑆 against adversary A is the advantage 𝛼 (SHVZK0

𝑆
, SHVZK1

𝑆
) (A).

Definition 7.2. The special soundness of an instantiation of a SIGMA scheme 𝑆 against adversary

A is the advantage 𝛼 (SOUND0
𝑆
, SOUND1

𝑆
) (A).

package: SHVZK0

mem:

Main(h, w, e):

assert (R h w)

(a, s) ← Σ.Init(h, w)

z ← Σ.Response(s, h, w, a, e)

return (h, a, e, z)

package: SHVZK1

mem:

Main(h, w, e):

assert (R h w)

(a, z) ← Σ.Simulate(h, e)

return (h, a, e, z)

Fig. 26. SHVZK𝑏 game

44 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

package: SOUND0

mem:

Extract(h, a, e, e', z, z'):

v ← Σ.Verify(h, a, e, z)

v' ← Σ.Verify(h, a, e', z')

if ((e ≠ e') && v && v') then

w' ← Σ.Extract(h, a, e, e', z,

z')

return (R h w')

else

return false

package: SOUND1

mem:

Extract(h, a, e, e', z, z'):

v ← Σ.Verify(h, a, e, z)

v' ← Σ.Verify(h, a, e', z')

return (e ≠ e') && v && v'

Fig. 27. SOUND𝑏 game

7.2 Commitment Schemes from Σ-Protocols
A commitment scheme is another cryptographic primitive allowing a committer with some message

𝑚𝑠𝑔 to convince a verifier of two things: First, that𝑚𝑠𝑔 has a fixed value set before contacting the

verifier. Second, that the committer can at any later time reveal the value of𝑚𝑠𝑔 to the verifier.

In particular, it must be the case that the verifier is convinced that the revealed message has not

been changed from the original fixed message.

A commitment scheme is parameterized by types of messages, opening keys, and commitments.

The scheme is given by the following:

(1) Commit, a probabilistic and stateful procedure, which produces a commitment from a

message and an opening key.

(2) Ver, which takes as input a commitment, message, and opening key and checks the validity

of the commitment.

Definition 7.3. A commitment scheme is called secure when it is both hiding and binding:
• Hiding: For any commitment 𝑐 produced from message𝑚𝑠𝑔 there exists a message𝑚𝑠𝑔′ ≠
𝑚𝑠𝑔 with commitment 𝑐′ indistinguishable from 𝑐 .

• Binding: For any commitment 𝑐 it is infeasible to find messages with opening keys (𝑚𝑠𝑔, 𝑜)
and (𝑚𝑠𝑔′, 𝑜 ′) with𝑚𝑠𝑔 ≠𝑚𝑠𝑔′ such that both messages are valid openings for 𝑐 .

For any given instance of a commitment scheme we define the security definitions from Defini-

tion 7.3 as the security games seen in Figure 30 and Figure 31.

Following the presentation of Damgaard [50], we show how our SIGMA scheme with related

security games can be used to construct a commitment scheme. This result is mostly of theoretical

interest, and has previously been formalized in CryptHOL [42]. We formalize the result in SSProve

to experiment with leveraging the package laws to build one protocol from another, and compare

this result with the construction in CryptHOL in Section 7.2.1.

The key component of this transformation is the COM package shown in Figure 29. Here, COM is

parameterized by the SIGMA scheme. Moreover, COM is meant to be composed with the KEY package,
which is responsible for distributing the public and secret keys between the parties, and as such

imports Init and Get. The KEY package is shown in Figure 28. Note that the KEY package contains

the signing key. We use the KEY package because we need to sample a commitment key which fits

the relation of the Σ-protocol without revealing the underlying witness used. Without this package

SSProve: A foundational framework for modular cryptographic proofs in Coq 45

package: KEY
mem: setup_loc : option bool

h_loc : option statement
w_loc : option witness

Init():

b ← get setup_loc

assert (b ≠ ⊥)
w <$ witnessD

let h := gw in

assert (R h w)

put h_loc := Some h

put w_loc := Some w

put setup_loc := Some false

return ()

Get():

assert (b == Some false)

h ← get h_loc

return h

Fig. 28. KEY package

we would not be able to use our theorems of the Σ-protocol without giving the committer access to

the secret part of the relation.

COM then exports two procedures:

(1) Commit, which uses the public and secret parts of the relation to produce a commitment

to the challenge 𝑒 . For this transformation, the commitment is the initial message of the

underlying Σ-protocol.
(2) Ver, which takes the commitment and the opening information and verifies their consistency.

This, again, is dependent on the underlying Σ-protocol.

In this transformation, the types of the underlying Σ-protocol dictate the types of the commitment

scheme. In particular, the message type of the commitment scheme is the type of the challenge

used in the Σ-protocol.
First, in Theorem 7.4 we show that the construction is hiding with its security bounded by the

Special Honest-Verifier Zero-Knowledge property of the underlying Σ-protocol.

Theorem 7.4. For any instantiation of the SIGMA scheme, the commitment scheme given by COM◦KEY,
where the adversary is given oracle access to the KEY package, is hiding with the following advantage:

𝛼 ((HIDE0 ◦ COM ◦ KEY) ∥ KEY, (HIDE1 ◦ COM ◦ KEY) ∥ KEY) (A) ≤
𝛼 ((HIDE0 ◦ AUX ◦ SHVZK0) ∥ KEY, (HIDE1 ◦ AUX ◦ SHVZK1) ∥ KEY) (A) +
𝛼 (SHVZK01) (A ◦ (HIDE0 ◦ AUX ∥ KEY)) +
𝛼 (SHVZK01) (A ◦ (HIDE1 ◦ AUX ∥ KEY))

where AUX is the package given by inlining (SIGMA ∥ KEY) into COM and replacing the call to the
Σ-protocol simulator with SHVZK1.𝑀𝑎𝑖𝑛. Note that SHVZK1.𝑀𝑎𝑖𝑛 requires both a public statement and

46 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

package: COM
mem:

Commit(m):

Init()

h ← Get()

(c, o) ← Σ.Simulate(h, m)

return (c, o)

Ver(c, m, o):

h ← Get()

v ← Σ.Verify(h, c, m, o)

return v

Fig. 29. COM package

package: HIDE0

mem:

Hide(m1, m2):

k <$ uniform bool

if k then

(c, o) ← Commit(m1)

else

(c, o) ← Commit(m2)

return c

package: HIDE1

mem:

Hide(m1, m2):

m <$ challengeD

(c, o) ← Commit(m)

return c

Fig. 30. HIDE𝑏 game

package: BIND
mem:

Bind(c, m, o, m', o'):

v ← Ver(c, m, o)

v' ← Ver(c, m', o')

return (m ≠ m') && v && v'

Fig. 31. BIND Package

package: BIND-Aux
mem:

Bind(c, m, o, m', o'):

h ← Get()

b ← Extract(h, c, m, m', o, o')

return b

Fig. 32. BIND-AUX Package

a witness as its arguments. Since COM calls KEY.𝐼𝑛𝑖𝑡 the witness exists within the package COM ◦ KEY.
The SHVZK1 .𝑀𝑎𝑖𝑛 procedure is called with the statement and witness produced by KEY.11

11
An anonymous reviewer points out that it should be possible to obtain a sharper bound as follows. The hiding games for a

commitment scheme contains some redundancy: HIDE0 is already a left-or-right security notion in itself, and is compared to

the ideal HIDE1 game which commits to random messages. This duplication appears in the advantage above as the SHVZK

advantage counted twice, when once would be sufficient with a different formulation of the hiding games. We prefer to

stick to the present presentation, as it facilitates comparison with the work of Butler et al. [42].

SSProve: A foundational framework for modular cryptographic proofs in Coq 47

Proof of Theorem 7.4. The HIDE package is introduced in Figure 30. First, let D = A ◦
(ID𝑒𝑥𝑝𝑜𝑟𝑡𝑠 (HIDE) ∥ KEY). Applying Lemma 2.2 we obtain:

𝛼 ((HIDE0 ◦ COM ◦ KEY), (HIDE1 ◦ COM ◦ KEY)) (D) ≤
𝛼 ((HIDE0 ◦ COM ◦ KEY), HIDE0 ◦ AUX ◦ SHVZK1) (D) +
𝛼 (HIDE0 ◦ AUX ◦ SHVZK1, HIDE0 ◦ AUX ◦ SHVZK0) (D) +
𝛼 (HIDE0 ◦ AUX ◦ SHVZK0, HIDE1 ◦ AUX ◦ SHVZK0) (D) +
𝛼 (HIDE1 ◦ AUX ◦ SHVZK0, HIDE1 ◦ AUX ◦ SHVZK1) (D) +
𝛼 (HIDE1 ◦ AUX ◦ SHVZK1, (HIDE1 ◦ COM ◦ KEY)) (D)

The advantage of moving to and from the AUX package is 0, since AUX consists of COM where the

KEY package inlined and the simulator is replaced with calls to the SHVZK package.
By Lemma 2.3:

𝛼 (HIDE0 ◦ AUX ◦ SHVZK1, HIDE0 ◦ AUX ◦ SHVZK0) (D) = 𝛼 (SHVZK1, SHVZK0) (D ◦ HIDE0 ◦ AUX).
This gives us one of the bounds we are looking for. Similarly, the other SHVZK bound is obtained

from 𝛼 (HIDE1 ◦ AUX ◦ SHVZK0, HIDE1 ◦ AUX ◦ SHVZK1) (D).
This leaves us with 𝛼 (HIDE0 ◦ AUX ◦ SHVZK0, HIDE1 ◦ AUX ◦ SHVZK0) (D), which is the last bound

of Theorem 7.4. □

The binding property states that it must be infeasible for an adversary to produce two openings

to the same commitments. Usually, this property is stated as: the probability of BIND◦COM returning
true, for any input, is sufficiently small. In SSProve, we do not have a unary logic to express such a

statement. Rather, we prove in our relational logic that any adversary which makes BIND ◦ COM
return true, can be used to construct a program that outputs a witness of the relation. The package

using the adversary to extract a witness for the relation is given by Figure 32. If a Σ-protocol is
used to construct the commitment scheme, then the binding game is infeasible to win, because it is

infeasible to compute the witness from the statement in a Σ-protocol. 12

Theorem 7.5. For any instantiation of the Σ scheme, the probability of winning the binding game
or computing the witness from the statement only differ by the probability of Σ.Extract outputting a
valid witness for the relation:

𝛼 (BIND ◦ (COM ◦ KEY), BIND-Aux ◦ SOUND0) (A ◦ (ID𝑒𝑥𝑝𝑜𝑟𝑡𝑠 (BIND) ∥ KEY)) ≤
𝛼 (SOUND) (A ◦ ((BIND-AUX ◦ KEY)) ∥ KEY).

To prove Theorem 7.5, we use Lemma 2.2 and Lemma 2.3 to replace the commitments with

Σ-protocol transcripts, via SOUND1.

7.2.1 Comparison to Formalization in CryptHOL. The construction deriving commitment schemes

from Σ-protocols has also been formalized in CryptHOL [42]. In their definition, the commitment

scheme construction is dependent on the types needed to instantiate a Σ-protocol. The proofs
of hiding and binding are then quantified over any secure Σ-protocol that can be formed from

the specified types. In particular, it is required that the distinguishing advantage on the special

honest-verifier zero-knowledge security game is 0. Moreover, they assume that the Σ.Response and
Σ.Verify procedures of the Σ-protocol terminate on all inputs.

In contrast, our security bounds defined in Theorem 7.4 and Theorem 7.5 make no assumptions

on the underlying Σ-protocol other than that it implements the SIGMA interface. Because our results

12
Our definition of the binding game is equivalent to those used in other formalizations of commitment schemes [42, 73].

An anonymous reviewer suggests that these definitions are reminiscent of a trapdoor commitment scheme. We leave a

detailed comparison to future work.

48 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

Σ.Init(h, w):

r <$ witnessD

return (gr, r)

Σ.Response(s, h, w, a, e):

return s + e * w

Σ.Verify(h, w, a, e, z):

return gz = a * he

Σ.Simulator(h, e):

z <$ witnessD

return (h, gz * h-e, e, z)

Σ.Extractor(h, a, e, e', z, z'):

return (z - z') / (e - e').

Fig. 33. SCHNORR Σ-scheme

hold for any SIGMA package, we obtain a more general notion of security for the hiding property

in Theorem 7.4, where the security bound is directly related to the security of the underlying

Σ-protocol.
The imperfect game hops are justified by the package theorems of SSProve, which can be seen

in the proof of Theorem 7.4. In particular, this allows us to accumulate the advantage from our

game-hops into our final security bound, whatever the respective intermediate advantages may be.

Without the ability to reason about the advantage of composed packages, the proof would have

had to involve significantly more steps, or make the same assumptions as in [42]. Namely, if we

adopt the same assumption, then the proof of the security bounds can be done entirely within

the relational logic itself. More concretely, the assumption of perfect special honest-verifier zero-

knowledge reduces the statement from an adversary comparing both programs to the two programs

being equivalent in the relation logic.

7.3 Concrete Implementation: Schnorr’s protocol
The Schnorr protocol [87] is parameterized over a cyclic group (G, *) with 𝑞 elements generated

by 𝑔. Schnorr’s protocol is a Σ-protocol for the relation (ℎ,𝑤) ∈ R ⇐⇒ ℎ = 𝑔𝑤 , where 𝑤 is an

element of Z𝑞 and ℎ ∈ G.
Messages are elements 𝑎 ∈ G and responses are elements 𝑧 ∈ Z𝑞 . Challenges are sampled from a

uniform distribution over Z𝑞 .
The protocol is implemented as an SSP package as shown in Figure 33. In particular, the package

exports match the expected imports of our Σ-protocol security statements.

Lemma 7.6 (Schnorr SHVZK). For any adversary A we have the following equality:

𝛼 (SHVZK01SCHNORR) (A) = 0

Proof of Lemma 7.6. We use Theorem 2.4 to show the two packages are perfectly indistinguish-

able. After inlining the definition of Schnorr’s protocol we get the code found in Table 1. Since the

SHVZK𝑏 package does not use state and the procedures of Σ scheme are stateless we use equality of

heaps as our invariant.

SSProve: A foundational framework for modular cryptographic proofs in Coq 49

Table 1. Code comparison of SHVZK0 and SHVZK1 with Schnorr’s protocol

SHVZK0.Main(h, w, e) SHVZK1.Main(h, w, e)

assert h = gw

r <$ witnessD

a ← gr

z ← r + e * w

return (h, a, e, z)

assert h = gw

z <$ witnessD

a ← gz * h-e

return (h, a, e, z)

Table 2. Code comparison of SOUND0 and SOUND1 with Schnorr’s protocol

(SOUND0.Extract(h, a, e, e', z, z') (SOUND1.Extract(h, a, e, e', z, z')

v ← gz = a * he

v' ← gz’ = a * he’

if ((e ≠ e') && v && v') then

w' ← (z - z') / (e - e')

return (h = gw’)

else

return false

v ← gz = a * he

v' ← gz’ = a * he’

return ((e ≠ e') && v && v')

When comparing the code in Table 1 the programs immediately differ in the use of their randomly

sampled values. To make the programs agree on return values we use the uniform rule from §4.1.

First, we see that both sides assert that the relation R holds. We remove both asserts and assume

for the rest of the proof that R holds. Applying uniform with 𝑓 : 𝑥 ↦→ 𝑥 + 𝑒 ·𝑤 and moving all

constants into the return statement we obtain: (ℎ,𝑔𝑟 , 𝑒, 𝑟 + 𝑒 ·𝑤) ?

= (ℎ,𝑔𝑓 (𝑧) · ℎ−𝑒 , 𝑒, 𝑓 (𝑟)). We solve

the goal with the following equality:

(𝑔𝑟 , 𝑒, 𝑟 + 𝑒 ·𝑤) = (𝑔𝑟 · ℎ𝑒 · ℎ−𝑒 , 𝑒, 𝑟 + 𝑒 ·𝑤)
= (𝑔𝑟 · 𝑔𝑤 ·𝑒 · ℎ−𝑒 , 𝑒, 𝑟 + 𝑒 ·𝑤)
= (𝑔𝑟+𝑒 ·𝑤 · ℎ−𝑒 , 𝑒, 𝑟 + 𝑒 ·𝑤)
= (𝑔𝑓 (𝑟) · ℎ−𝑒 , 𝑒, 𝑓 (𝑟))

where we use the fact that the relation ℎ = 𝑔𝑤 holds for our particular values of ℎ and𝑤 . □

Lemma 7.7 (Schnorr Special-Soundness). For all adversaries A we have the following equality:

𝛼 (SOUND01SCHNORR) (A) = 0

Proof of Lemma 7.7. We use Theorem 2.4 to show the two packages are perfectly indistinguish-

able. After inlining the definition of Schnorr’s protocol we get the code found in Table 2. Since

neither Schnorr’s protocol nor the SOUND𝑏 package use state, we can use equality of heaps as our

invariant.Both sides are given the same inputs so the two programs are indistinguishable after the

two verifications. The if-statement in SOUND0 is equal to the return value of SOUND1. Hence, the two

50 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

Table 3. Code comparison of HIDE0 ◦ COMSCHNORR ◦ KEY and HIDE1 ◦ COMSCHNORR ◦ KEY

(HIDE0 ◦ COMSCHNORR ◦ KEY).Hide(m1, m2) (HIDE1 ◦ COMSCHNORR ◦ KEY).Hide(m1, m2)

k <$ uniform bool

Init()

h ← Get()

r <$ witnessD

if k then

a ← gr

z ← r + m1 * w

put e_loc := Some m1

else

a ← gr

z ← r + m2 * w

put e_loc := Some m1

put z_loc := Some z

return a

Init()

h ← Get()

m <$ challengeD

a ← gr

z ← r + m * w

put e_loc := Some m

put z_loc := Some z

return a

programs are indistinguishable if ℎ = 𝑔𝑤
′
. We show this indeed holds:

𝑔𝑧 = 𝑎 · ℎ𝑒 ∧ 𝑔𝑧′ = 𝑎 · ℎ𝑒′ ∧ 𝑒 ≠ 𝑒′ =⇒ ℎ = 𝑔 (𝑧−𝑧
′)/(𝑒−𝑒′) = 𝑔𝑤

′
.

□

Based on Lemma 7.6 and Lemma 7.7 we can instantiate Theorem 7.4 and Theorem 7.5. For the

latter, we can directly apply the theorem to show that any adversary has no advantage between

the binding game and directly extracting the witness. For the former, the adversary also has no

advantage, which we show in Theorem 7.8.

Theorem 7.8. For all adversaries A we get the following equality for the commitment scheme
instantiated from Schnorr’s protocol:

𝛼 (HIDE01 ◦ COMSCHNORR ◦ KEY) (A) = 0

Proof of Theorem 7.8. We use Theorem 7.4 to obtain:

𝛼 ((HIDE0 ◦ COM ◦ KEY) ∥ KEY, (HIDE1 ◦ COM ◦ KEY) ∥ KEY) (A) ≤
𝛼 ((HIDE0 ◦ AUX ◦ SHVZK0) ∥ KEY, (HIDE1 ◦ AUX ◦ SHVZK1) ∥ KEY) (A) +
𝛼 (SHVZK) (A ◦ (HIDE0 ◦ AUX ∥ KEY)) +
𝛼 (SHVZK) (A ◦ (HIDE1 ◦ AUX ∥ KEY))

From Lemma 7.6 we get the two terms involving the advantage on the SHVZK game is 0.

𝛼 ((HIDE0 ◦ COM ◦ KEY) ∥ KEY, (HIDE1 ◦ COM ◦ KEY) ∥ KEY) (A) ≤
𝛼 ((HIDE0 ◦ AUX ◦ SHVZK0) ∥ KEY, (HIDE1 ◦ AUX ◦ SHVZK1) ∥ KEY) (A)

To finish the proof we show that HIDE0 ◦ AUX ◦ SHVZK0 and HIDE1 ◦ AUX ◦ SHVZK0 are perfectly
indistinguishable using Theorem 2.4. After inlining package composition and simplification of the

if-statement we end up with the code comparison found in Table 3.

Because both sides use COM to store the value of ewe cannot use equality of heaps as the invariant
since the two sides store different values. Instead, we rely on the equality of heaps on all locations

SSProve: A foundational framework for modular cryptographic proofs in Coq 51

except the location of e. With the invariant fixed we now show equivalence between the two

programs.

Looking at Table 3, we observe that the random sampling of e in the right-hand program has

no counterpart on the left side. However, the particular choice of value for e on the right is not

important: e simply gets used to compute z and gets stored in e_loc. We can thus remove the

sampling by appealing to the sample-irrelevant rule. This transformation is possible since our

invariant allows us to ignore the value of e stored in memory on both sides. We are then left

with the two sides being equal barring the computation of the value 𝑧 and storing the value of 𝑧.

Fortunately, the relational program logic supports one-sided rules for writing memory. With this

we have the same program on both sides up to the return statement. Last, we can conclude perfect

equivalence since the return values are equal and no memory operations altered any locations

except the locations ignored by the invariant. □

We omit the simple proof of the binding property [42, pg.9], which can be found in our formal-

ization (Lemma commitment_binding in SigmaProtocol.v).

8 RELATEDWORK
SSProve is the first verification framework for SSP, yet the formal verification of cryptographic

proofs in other styles has been intensely investigated [15]. In this section we survey the closest

related work in this space.

CertiCrypt [26] is a foundational Coq framework for game-based cryptographic proofs. Cer-

tiCrypt does not support modular proofs and is no longer maintained, yet it is seminal work that

has inspired many other tools in this space, such as EasyCrypt, FCF, etc. The logic we introduce in

§4 is also inspired by the probabilistic relational Hoare logic at the core of CertiCrypt.

FCF [78] is a more recent foundational Coq framework for cryptographic proofs that was used to

verify the HMAC implementations in OpenSSL [31] and mbedTLS [98]. In contrast to CertiCrypt’s

(and EasyCrypt’s) deep embedding of a probabilistic While language, FCF represents code with

finite probabilities and non-termination using a monadic embedding, similar to the free monad

we use for code in §3.1. The advantage of such an embedding is that code can be both easily

manipulated as a syntactic object (e.g., to define package composition in §3.1) and easily lifted

to a probability monad when needed (§3.2 and §5.2), all without leaving Gallina, the internal

language of Coq. This monadic representation of computational effects could also allow a more

modular treatment of programs exhibiting effects of different nature such as communications with

an external process [70]. Building a formalization of SSP on top of FCF may also be possible in

principle though, and maybe even more interesting in practice could be rebasing SSProve on a

simpler but less modular semantic model in the style of FCF or XHL [94] (as discussed in §5.5).

EasyCrypt [21, 24] is a proof assistant and verification tool specifically designed for game-

based cryptographic proofs and built from scratch. This state-of-the-art tool provides not only a

probabilistic relational Hoare logic in the style of CertiCrypt (as we also do in section 4), but also a

unary logic for reasoning about the probabilities of bad events [23, 26] (which is, as mentioned in

subsection 2.3, future work for SSProve). EasyCrypt has for instance been used to prove security

of Amazon Web Services’ Key Management Service [6]; of electronic voting schemes [51]; of zero-

knowledge protocols [54]; of secure multiparty computation constructions [8]; of distance-bounding

protocols [36]; and of low-level implementations of cryptographic primitives [5, 7, 9, 18, 88].

EasyCrypt’s good integration with automatic theorem provers (e.g., SMT solvers) seems helpful

for such proofs, even if it does come at a cost in terms of trusted computing base. EasyCrypt also

comes with an ML-style module system [16], as well as other abstraction mechanisms such as

“theories”. The default way of mechanizing proofs in EasyCrypt is, however, quite different than

52 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

that of SSP. The EasyCrypt abstraction mechanisms were designed for allowing reuse of code and

theorems [21], but they are rarely used at the moment to provide a modular high-level structure to

cryptographic reduction proofs in the style of SSP [52].

In concurrent work, Dupressoir et al. [52] show that they can mechanize in EasyCrypt an SSP-

style multi-instance security proof for the Cryptobox [32] KEM-DEM [48] construction, and they

discuss the various trade-offs they had to navigate and the strengths and shortcomings of EasyCrypt

for formalizing such SSP-style proofs. Their multi-instance setting comes with specific challenges

that do not appear in our mechanized proof from §6, such as the adversarial ability to create corrupt

key instances. Yet despite the different setting, the high-level structure of the proofs seems similar

to us.

Beyond this case study, we focus on providing a general framework for SSP proofs, including

formal definitions of SSP packages, their composition, and the corresponding algebraic laws.

Dupressoir et al. [52] show instead informally, in the context of their example, how SSP concepts

can be mapped to existing features in EasyCrypt. In particular, games are mapped to modules, and

packages with imports are mapped to ML-style functors [75], i.e., modules parameterized by other

modules. Modules and functors are not fully first class in EasyCrypt though: while it is possible

to quantify over modules, formulas cannot talk about module equality [93]. As a result, SSP-style

laws cannot be stated or proven, and one has to manually write down all the functors involved in

the proof, and argue about equality of the individual procedures instead.

SSP also has a notion of parameterized packages, in particular packages parameterized by

crypto schemes or multi-instance packages [40, Section 5]. For the former, in SSProve we can

easily parametrize packages over parameters like crypto schemes using the expressive abstraction

mechanisms of Coq’s functional programming language, such as functions returning packages.

Dupressoir et al. achieve something similar using the module-level abstraction mechanisms of

EasyCrypt, choosing between functors and theories on a case by case basis [52, pg. 7]. The latter—

multi-instance packages in SSP—are regular packages for which the names of the procedures

(defined or used by the package) are indexed by natural numbers. To support multi-instance

packages in SSProve a small technical change is needed: we can parametrize both the packages’

memory locations and procedure names by an offset in order to make each instance distinct, which

some of the authors have already tried out in ongoing work on formally connecting SSProve and

Jasmin [5, 60]. By contrast, Dupressoir et al. [52] represent a multi-instance package as a single

regular module (or functor) in EasyCrypt, having as state a map from instance indices to the actual

state of each instance, and where the procedures also take an explicit instance index as argument.

SSProve gives the assert operation from SSP a simple and clearly defined semantics: assertion

failure samples from the empty probability subdistribution (the same as entering an infinite loop in

EasyCrypt). While this is not the only choice [29], this formalizes our understanding of the following

informal convention from the paper introducing SSP [40]: “all our definitions and theorems apply

only to code that never violates assertions.” By contrast, Dupressoir et al. [52], manually encode a

different, “oracle silencing” semantics for assertion failures [84] in their case study, but without

formally providing an assert construct, which seems non-trivial to formalize for their semantics.

SSProve faithfully follows the SSP model for memory initialization, allowing to express SSP

proofs more naturally. Using default initial values for implicitly initializing all state variables allows

us to define the notion of distinguishing advantage in terms of running on an initial memory,

as done in SSP. By contrast, Dupressoir et al. [52] use a mix of explicit initialization and logical

preconditions to restrict the memories considered to those which are properly initialized. Finally,

one aspect in which we took a similar design decision in SSProve to Dupressoir et al. [52], is the

absence of the implicit 𝛼-renaming conventions and pervasive state separation of Brzuska et al. [40].

We instead reason about concrete locations and explicitly require state separation only between

SSProve: A foundational framework for modular cryptographic proofs in Coq 53

adversaries and the games with which they are composed. Reasoning about concrete locations in a

shared global memory is not without downsides though, since as seen in §2.3 and §6.3 sometimes

details of the proofs or assumptions do leak into the final theorem statements, so more research on

better supporting private state for machine-checked modular cryptography would be helpful, in

particular to also allow fresh locations to be allocated.

EasyUC [45] aims to address the lack of composability in game-based proofs by formalizing the

Universal Composability (UC) framework [43] using EasyCrypt. EasyUC replaces the interactive

Turing machines in UC with EasyCrypt functions. It was used to prove a secure messaging protocol

composed of Diffie-Hellman and one-time pad. More recent work develops a DSL [44] on top of

EasyUC for hiding away the boilerplate needed tomediate between procedure-based communication

in EasyCrypt and co-routine-based communication in the UC framework. Barbosa et al. [16] add

automatic complexity analysis to EasyCrypt and use it for another formalization of UC. ILC [66]

is a process calculus modelling some of the key ideas behind the UC framework, in particular its

co-routine based communication mechanism, while completely abstracting away from interactive

Turing machines. ILC has not yet been formalized in a proof assistant. SSP was in part inspired by

the UC framework, but focuses on making game-based proofs more modular and scalable, without

targeting universal composability. A more precise comparison between SSP and UC proofs would

be interesting, but out of scope for the current paper. Recent work by Brzuska and Oechsner [41]

and Brzuska et al. [39] indicates that SSP can also be relevant for simulation-based security.

CryptHOL [27] is a foundational framework for game-based proofs that established a connection

between relational parametricity and coupling, the main workhorse of pRHL, to achieve automation

in the Isabelle/HOL proof assistant. CryptHOL also makes use of the extensive mathematical

libraries of Isabelle/HOL. More proof engineering and automation would be needed for SSProve to

have a chance at matching the elegance of CryptHOL’s formalization of ElGamal or PRF-based

encryption. CryptHOL [67] has been also used to formalize Constructive Cryptography [71] (an

instance of Abstract Cryptography [72]), another composable framework that inspired SSP, and

the example of a one-time pad. CryptHOL converters are similar to SSP packages, however, there

are certain distinctions that we discuss here: To begin, converters combine all their procedures into

a single resumption-like value, resulting in simpler interfaces consisting of a dependent pair (𝐴, 𝐵),
where 𝐴 denotes a global input type and 𝐵 a global output type of the bundled procedures, and an

additional invariant is maintained to ensure that outputs correspond to specific inputs. Procedures

in SSP packages are written using a free monad that captures the probabilistic operations without

evaluating them, and only at a later stage these operations are interpreted, whereas converters

are built directly over the probabilistic subdistributions monad. Similarly, SSP packages utilize

uninterpreted operations for stateful operations, whereas converters keep a hidden state using the

coinductive structure of resumptions. CryptHOL provides a bisimilarity notion that can be used to

prove perfect indistinguishability, similar to our Theorem 2.4, but in addition, they also provide a

bisimulation-style proof rule for establishing trace equivalence, which as they show is needed in

certain cryptographic arguments.

Regarding automation, both Isabelle/CryptHOL and EasyCrypt are based on classical HOL and

provide powerful SMT-based automation. A detailed comparison between the HOL-systems and

systems like Coq based on dependent type theory is out of scope for the present paper. We merely

observe that huge formalizations have been carried out in both traditions. On the narrow topic of

SMT-based automation, we mention this is also being developed for Coq [12, 49], and any progress

on those projects could also profit SSProve. Another key part of the automation in EasyCrypt is the

auto tactic, which tries a to apply rules of the program logic based on the structure of the code. We

have a similar tactic in SSProve, which moreover, is easily extensible due to Coq’s tactic language.

54 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

IPDL [56] is another recent Coq framework for cryptographic proofs. Although their motivation

is similar to SSP and their interaction sets are reminiscent of packages, the relation of IPDL

to other composable frameworks has not been worked out, and is out of scope for the current

paper. Their compositional formalism seems closer to Constructive Cryptography [71] than to UC.

Another recent work that seems related to Constructive Cryptography is categorical composable

cryptography [37], which gives an abstract model of composable cryptographic security definitions

in terms of categorically formulated resource theories [46]. The authors leave open the precise

relation to Constructive Cryptography, or to other established cryptographic frameworks.

Computational Indistinguishability Logic (CIL) [20] is another formal framework for reasoning

about cryptographic primitives in terms of “oracle systems”, which are inspired by probabilistic

process algebra and which seem related to SSP packages. The operational model and the soundness

of CIL have been formalized in Coq [47].

SSP packages have been motivated by ML modules [85] and sequential composition of packages

is similar to the usual composition of modules. No specific theory for probabilistic programming

languages with stateful modules seems to be available, but Sterling and Harper [92] provide a

general module system. It would be interesting to specialize it to probabilistic stateful programs

and compare it to packages.

9 FUTUREWORK
The high-level proofs done on paper in the miTLS project [33, 34, 39, 55] were the main inspiration

for the SSP methodology and it would be an interesting challenge to scale SSProve to mechaniz-

ing such large security proofs in the future. This would for a start require more work on proof

engineering and automation, as well as implementing a unary logic for reasoning about the prob-

abilities of bad events [23, 26]. The problem of verifying such large proofs all the way down to

low-level efficient executable code is even more challenging, also given the large scale of a complete

implementation for a protocol like TLS. Achieving this in Coq would probably require integrating

with projects such as Jasmin [5, 7], VST [11], or FiatCrypto [53]. Some of the authors have in fact

been working on integrating SSProve with Jasmin [5, 7] by defining a translation from the Coq

representation of Jasmin programs to SSProve programs, while provably preserving semantics [60].

This allows them to formally connect in Coq security proofs in SSProve to the assembly code

produced by the Jasmin verified compiler.

An alternative would be to port SSProve to F
★
[95], where at least functional correctness can be

verified at that scale. Still many challenges would remain, including extending F
★
to probabilistic

verification, giving F
★
modules first-class status, and extending the SSP methodology to support

type abstraction and procedures with specifications. An interesting step in this direction is the

preliminary work of Kohbrok et al. [64], who have implemented vanilla SSP packages in F
★
and

attempted to automate state-separating proofs based on a library for partial setoids.

Finally, our formalization of Σ-protocols has been used recently to prove the security of the

OpenVoteNetwork smart contract [91].

ACKNOWLEDGMENTS
We are grateful to Arthur Azevedo de Amorim for his technical support and to Théo Laurent,

Sabine Oechsner, and Ramkumar Ramachandra for participating in stimulating discussions. We are

also grateful to Markulf Kohlweiss for pointing out a bug in our modelling of public-key encryption

schemes in the ElGamal example, which we quickly fixed as discussed in §2.4. We also thank Brzuska

et al. for their prompt fix of the informal proof of security for KEM-DEM [40] which allowed us

to complete our formalization. Finally we are also very grateful to the anonymous reviewers of

CSF and TOPLAS for their detailed and helpful feedback. This work was in part supported by

SSProve: A foundational framework for modular cryptographic proofs in Coq 55

Table 4. Pkgen code comparison of PKE-CCA𝑏 and AUX𝑏

PKE-CCA𝑏.Pkgen() AUX𝑏.Pkgen()

sk ← get sk_loc

assert sk = ⊥
(pk, sk) ← 𝜂.kgen
put pk_loc := Some pk

put sk_loc := Some sk

return pk

pk ← get pk_loc

assert pk = ⊥
sk ← get sk_loc

assert sk = ⊥
(pk, sk) ← 𝜂.kgen
put pk_loc := Some pk

put sk_loc := Some sk

return pk

the European Research Council under ERC Starting Grant SECOMP (715753), by AFOSR grant

Homotopy type theory and probabilistic computation (12595060), by the Concordium Blockchain

Research Center at Aarhus University, by Nomadic Labs via a grant on the Evolution, Semantics,
and Engineering of the F* Verification System, by the German Federal Ministry of Education and

Research BMBF (grant 16KISK038, project 6GEM) and by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) as part of the Excellence Strategy of the German Federal and

State Governments – EXC 2092 CASA - 390781972. Antoine Van Muylder holds a PhD Fellowship

from the Research Foundation – Flanders (FWO).

A PACKAGE EQUIVALENCE FOR KEM-DEM
In order to prove Theorem 6.2, we show that PKE-CCA𝑏 and AUX𝑏 (note that, as in §6, we assume

we are given a KEM 𝜂 and a DEM 𝜃 corresponding to the ones used in both games) are perfectly

indistinguishable using Theorem 2.4. After inlining package composition we end up with the code

comparison found in Table 4, Table 5, and Table 6. We deliberately add extra newlines to align

similar lines of code.

Because only AUX𝑏 makes use of the KEY package, the k_loc memory location is only used on

one side which means that we cannot use equality of heaps as an invariant. Instead, our invariant

corresponds to ensuring the following three points:

(1) equality of heaps on all locations except k_loc;
(2) pk_loc will store ⊥ if and only if sk_loc stores ⊥;
(3) whenever k_loc and ek_loc are set—i.e., do not contain ⊥—in AUX𝑏 , ek_loc will in fact

contain the result of the encapsulation of the value stored in k_loc.

To preserve this last invariant we exploit the correctness of the KEM, as we will see later.

We will now address the equivalences corresponding to the three different procedures in the

common export interface of PKE-CCA𝑏 and AUX𝑏 .

Equivalence for Pkgen. When looking at Table 4, we can see that the only difference is in the

first two lines of AUX𝑏 which are absent from PKE-CCA𝑏 . Taken in isolation, they would break the

equivalence because of the assert. Here we can leverage the invariant stating that the locations

pk_loc and sk_loc are always mutually set, so that if sk_loc contains ⊥ then pk_loc does too. To
exploit the invariant, we first swap commands on the right-hand side to perform the read of sk on

both sides and we recover the fact that it must be ⊥. We also verify that the invariant is preserved

as pk_loc and sk_loc are both set at the end of the run.

https://erc.europa.eu

56 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

Table 5. Pkenc code comparison of PKE-CCA𝑏 and AUX𝑏

PKE-CCA𝑏.Pkenc(msg) AUX𝑏.Pkenc(msg)

pk ← get pk_loc

assert pk ≠ ⊥ as pkSome

let pk := getSome pk pkSome in

ek ← get ek_loc

assert ek = ⊥
c ← get c_loc

assert c = ⊥

(k, ek) ← 𝜂.encap(pk)

if b then

c ← 𝜃 .enc(k, msg)

else

c ← 𝜃 .enc(k, 0)

put ek_loc := Some ek

put c_loc := Some c

return (ek, c)

pk ← get pk_loc

assert pk ≠ ⊥

ek ← get ek_loc

assert ek = ⊥
c ← get c_loc

assert c = ⊥
pk ← get pk_loc

assert pk ≠ ⊥ as pkSome

let pk := getSome pk pkSome in

ek ← get ek_loc

assert ek = ⊥
(k, ek) ← 𝜂.encap(pk)
put ek_loc := Some ek

k' ← get k_loc

assert k' = ⊥
put k_loc := Some k

put ek_loc := Some ek

c ← get c_loc

assert c = ⊥
k ← get k_loc

assert k ≠ ⊥ as kSome

let k := getSome k kSome in

if b then

c ← 𝜃 .enc(k,msg)
else

c ← 𝜃 .enc(k,0)
put c_loc := Some c

put c_loc := Some c

return (ek, c)

Equivalence for Pkenc. In Table 5 we can see a lot of repetition and locations that are read

at different occasions on the left- and right-hand sides. Thankfully our relational program logic

supports one-sided rules for memory reads and writes that remember values that have been written

and read; they correspond to rules like get-lhs or put-lhs that are presented at the end of §4.1.

With this we have the same programs on both sides up to the following line:

(k, ek) ← 𝜂.encap(pk)

To progress, we cannot merely use a simple application of the bind rule because we would then lose

the information that k and ek are related. Instead, we use the specification of 𝜂 (the KEM) to get as

a precondition, for the rest of the comparison, the fact that ek is the encryption of k. After that, on
the right-hand side we make use of the invariant relating pk, k_loc, and ek_loc to ascertain that

since ek_loc contains ⊥, so must k_loc. When the value of k_loc is read again on the right-hand

side, we proceed as above to remember the value that was just stored.

SSProve: A foundational framework for modular cryptographic proofs in Coq 57

Table 6. Pkdec code comparison of PKE-CCA𝑏 and AUX𝑏

PKE-CCA𝑏.Pkdec(ek',c') AUX𝑏.Pkdec(ek',c')

sk ← get sk_loc

assert sk ≠ ⊥ as skSome

let sk := getSome sk skSome in

ek ← get ek_loc

c ← get c_loc

assert (

(ek, c) ≠ (Some ek ', Some c')

)

k ← 𝜂.decap(sk , ek ')

return 𝜃 .dec(k, c')

pk ← get pk_loc

assert pk ≠ ⊥

ek ← get ek_loc

c ← get c_loc

assert (

(ek, c) ≠ (Some ek ', Some c')

)

if ek = Some ek ' then

c ← get c_loc

assert c ≠ Some c'

k ← get k_loc

assert k ≠ ⊥ as kSome

let k := getSome k kSome in

msg ← 𝜃 .dec(k,c')
else

sk ← get sk_loc

assert sk ≠ ⊥ as skSome

let sk := getSome sk skSome in

ek ← get ek_loc

assert ek ≠ Some ek '

k' ← 𝜂.decap(sk,ek ')
msg ← 𝜃 .dec(k', c')

return msg

The rest of the proof is straightforward, we only have to show that we preserved the invariant

when overwriting the memory, which means that we must show that the newly stored values in

k_loc and ek_loc must indeed correspond to a pair of a key and its encryption, a fact that we

recovered above.

Equivalence for Pkdec. For the most part before the if in Table 6, the equivalence proof is

conducted in roughly the same way as above. Then we proceed with a case-analysis on ek = Some
ek'. In the else branch, all of the asserts hold, as they hold in the lines above and the invariant

stating that pk_loc is ⊥ if and only if sk_loc is satisfied, and furthermore the case-analysis yielded

ek ≠ Some ek'. The rest of the code in the else branch then goes on to produce exactly the same

result as the left-hand side.

The more interesting bit happens in the then branch where there is no call to the decapsulation

procedure 𝜂.decap of the KEM. Instead, we exploit the invariant that states that the stored encrypted

key in ek_loc corresponds to the encryption of the key in k_loc using the public key in pk_loc,
a fact which we encoded by saying that in this case k is equal to 𝜂.encap(sk, ek). We conclude

remembering that we are in the branch where ek = Some ek'.
Now that the three procedures have been shown equivalent, we know that the two packages are

indeed perfectly indistinguishable.

58 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

REFERENCES
[1] Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Cătălin Hriţcu,

Kenji Maillard, and Bas Spitters. 2021. SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq.

In CSF. IEEE. https://doi.org/10.1109/CSF51468.2021.00048
[2] Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano, Steven Schäfer, and Kathrin

Stark. 2019. POPLMark reloaded: Mechanizing proofs by logical relations. J. Funct. Program. 29 (2019), e19. https:
//doi.org/10.1017/S0956796819000170

[3] Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and Kazuhiko Sakaguchi. 2020.

Competing inheritance paths in dependent type theory: a case study in functional analysis. In IJCAR 2020 - International
Joint Conference on Automated Reasoning. Paris, France, 1–19.

[4] Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, Kazuhiko Sakaguchi, and Pierre-Yves

Strub. 2021. mathcomp-analysis. Analysis library compatible with Mathematical Components. https://github.
com/math-comp/analysis

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,

Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM, 1807–1823. https://doi.org/10.1145/3133956.3134078
[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie Cohen, Benjamin Grégoire, Vitor

Pereira, Bernardo Portela, Pierre-Yves Strub, and Serdar Tasiran. 2019. A Machine-Checked Proof of Security for AWS

Key Management Service. In CCS 2019. ACM, 63–78. https://doi.org/10.1145/3319535.3354228
[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, Vincent Laporte, Tiago

Oliveira, and Pierre-Yves Strub. 2020. The Last Mile: High-Assurance and High-Speed Cryptographic Implementations.

In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 965–982.
https://doi.org/10.1109/SP40000.2020.00028

[8] José Bacelar Almeida, Manuel Barbosa, Manuel L. Correia, Karim Eldefrawy, Stéphane Graham-Lengrand, Hugo

Pacheco, and Vitor Pereira. 2021. Machine-checked ZKP for NP relations: Formally Verified Security Proofs and

Implementations of MPC-in-the-Head. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine

Shi (Eds.). ACM, 2587–2600. https://doi.org/10.1145/3460120.3484771
[9] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire,

Vincent Laporte, Tiago Oliveira, Alley Stoughton, and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Crypto-

graphic Standards: Indifferentiability of Sponge and Secure High-Assurance Implementations of SHA-3. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, Novem-
ber 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 1607–1622.

https://doi.org/10.1145/3319535.3363211
[10] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. 2015. Monads need not be endofunctors. Logical Methods

in Computer Science 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:3)2015
[11] Andrew W. Appel. 2011. Verified Software Toolchain - (Invited Talk). In ESOP (Lecture Notes in Computer Science,

Vol. 6602). Springer, 1–17. https://doi.org/10.1007/978-3-642-19718-5_1
[12] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Benjamin Werner. 2011. A

Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In Certified Programs and Proofs - First
International Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings. 135–150.

[13] Philippe Audebaud and Christine Paulin-Mohring. 2006. Proofs of Randomized Algorithms in Coq. In Mathematics of
Program Construction. Springer, 49–68.

[14] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios

Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic. 2005. Mechanized Metatheory for the

Masses: The PoplMark Challenge. In 18th International Conference on Theorem Proving in Higher Order Logics. 50–65.
https://doi.org/10.1007/11541868_4

[15] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. 2021.

SoK: Computer-aided cryptography. In SP 2020-42nd IEEE Symposium on Security and Privacy.
[16] Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, and Pierre-Yves Strub. 2021. Mechanized Proofs

of Adversarial Complexity and Application to Universal Composability. In CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong

Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM, 2541–2563. https://doi.org/10.1145/3460120.3484548
[17] R. Barnes, B. Beurdouche, R. Robert, J. Millican, E. Omara, and K. Cohn-Gordon. 2022. The Messaging Layer Security

(MLS) Protocol. IETF Draft. https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-17

https://doi.org/10.1109/CSF51468.2021.00048
https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1017/S0956796819000170
https://github.com/math-comp/analysis
https://github.com/math-comp/analysis
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3319535.3354228
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1145/3460120.3484771
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/11541868_4
https://doi.org/10.1145/3460120.3484548
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-17

SSProve: A foundational framework for modular cryptographic proofs in Coq 59

[18] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao, Tiago Oliveira, Swarn Priya, Tamara

Rezk, and Peter Schwabe. 2021. High-Assurance Cryptography in the Spectre Era. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 1884–1901. https://doi.org/10.1109/SP40001.
2021.00046

[19] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine Lakhnech, Benedikt Schmidt, and Santiago

Zanella Béguelin. 2013. Fully automated analysis of padding-based encryption in the computational model. In CCS’13.
ACM, 1247–1260. https://doi.org/10.1145/2508859.2516663

[20] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, and Yassine Lakhnech. 2010. Computational indistinguishability

logic. In Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov (Eds.). ACM, 375–386.

https://doi.org/10.1145/1866307.1866350
[21] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. 2013.

EasyCrypt: A Tutorial. In Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures (Lecture
Notes in Computer Science, Vol. 8604). Springer, 146–166. https://doi.org/10.1007/978-3-319-10082-1_6

[22] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, and Pierre-Yves Strub. 2015. Relational

Reasoning via Probabilistic Coupling. In LPAR-20. 387–401. https://doi.org/10.1007/978-3-662-48899-7_27
[23] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016. A Program Logic for

Union Bounds. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy (LIPIcs, Vol. 55), Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 107:1–107:15. https://doi.org/10.4230/LIPIcs.ICALP.
2016.107

[24] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security

Proofs for the Working Cryptographer. In CRYPTO (Lecture Notes in Computer Science, Vol. 6841). Springer, 71–90.
https://doi.org/10.1007/978-3-642-22792-9_5

[25] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. 2015. Automated Proofs of Pairing-Based Cryptography. In

CCS’15. ACM, 1156–1168. https://doi.org/10.1145/2810103.2813697
[26] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. 2009. Formal certification of code-based crypto-

graphic proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009. 90–101. https://doi.org/10.1145/1480881.1480894

[27] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. 2020. CryptHOL: Game-Based Proofs in Higher-Order Logic.

J. Cryptol. 33, 2 (2020), 494–566. https://doi.org/10.1007/s00145-019-09341-z
[28] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. J. Log. Algebr. Meth. Program.

84, 1 (2015), 108–123. https://doi.org/10.1016/j.jlamp.2014.02.001
[29] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. 2015. Subtleties in the Definition of IND-CCA: When and How Should

Challenge Decryption Be Disallowed? J. Cryptol. 28, 1 (2015), 29–48. https://doi.org/10.1007/s00145-013-
9167-4

[30] Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption and a Framework for Code-Based Game-

Playing Proofs. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings (Lecture Notes in
Computer Science, Vol. 4004), Serge Vaudenay (Ed.). Springer, 409–426. https://doi.org/10.1007/11761679_25

[31] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015. Verified Correctness and Security of

OpenSSL HMAC. In 24th USENIX Security Symposium. USENIX Association, 207–221. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/beringer

[32] Daniel J. Bernstein. 2009. Cryptography in NaCl. https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
[33] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jianyang Pan, Jonathan

Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella Béguelin, and Jean Karim Zinzindohoue. 2017. Implement-

ing and Proving the TLS 1.3 Record Layer. IEEE S&P (2017).

[34] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Santiago Zanella

Béguelin. 2014. Proving the TLS Handshake Secure (As It Is). In CRYPTO’14 (Lecture Notes in Computer Science,
Vol. 8617). Springer, 235–255. https://doi.org/10.1007/978-3-662-44381-1_14

[35] Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover for Security Protocols. In IEEE S&P. IEEE
Computer Society, 140–154. https://doi.org/10.1109/SP.2006.1

[36] Ioana Boureanu, Constantin Catalin Dragan, François Dupressoir, David Gérault, and Pascal Lafourcade. 2021. Mecha-

nised Models and Proofs for Distance-Bounding. In 34th IEEE Computer Security Foundations Symposium, CSF 2021,
Dubrovnik, Croatia, June 21-25, 2021. IEEE, 1–16. https://doi.org/10.1109/CSF51468.2021.00049

[37] Anne Broadbent and Martti Karvonen. 2022. Categorical composable cryptography. In 25th International Conference on
Foundations of Software Science and Computation Structures, FOSSACS (Lecture Notes in Computer Science, Vol. 13242),

https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1145/2508859.2516663
https://doi.org/10.1145/1866307.1866350
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1145/2810103.2813697
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1007/s00145-019-09341-z
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1007/11761679_25
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/CSF51468.2021.00049

60 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

Patricia Bouyer and Lutz Schröder (Eds.). Springer, 161–183. https://doi.org/10.1007/978-3-030-99253-8_9
[38] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. 2022. Security Analysis of the MLS Key Derivation. In

43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE, 2535–2553.
https://doi.org/10.1109/SP46214.2022.9833678

[39] Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss.

2021. Key-schedule Security for the TLS 1.3 Standard. Cryptology ePrint Archive, Paper 2021/467; to appear at

Asiacrypt 2022. https://eprint.iacr.org/2021/467
[40] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss. 2018. State

Separation for Code-Based Game-Playing Proofs. In ASIACRYPT. Springer International Publishing, Cham, 222–249.

https://eprint.iacr.org/2018/306
[41] Chris Brzuska and Sabine Oechsner. 2021. A State-Separating Proof for Yao’s Garbling Scheme. Cryptology ePrint

Archive, Paper 2021/1453; To appear at CSF’2023. https://eprint.iacr.org/2021/1453
[42] D. Butler, A. Lochbihler, D. Aspinall, and A. Gascón. 2021. Formalising 𝛴-Protocols and Commitment Schemes Using

CryptHOL. 65, 4 (2021), 521–567. https://doi.org/10.1007/s10817-020-09581-w
[43] Ran Canetti. 2020. Universally Composable Security. J. ACM 67, 5 (2020), 28:1–28:94. https://doi.org/10.1145/

3402457
[44] Ran Canetti, Assaf Kfoury, Alley Stoughton, Mayank Varia, Gollamudi Tarakaram, and Tomislav Petrovic. 2021. UC

Domain Specific Language. unpublished. https://github.com/easyuc/EasyUC/tree/master/uc-dsl
[45] Ran Canetti, Alley Stoughton, and Mayank Varia. 2019. EasyUC: Using EasyCrypt to Mechanize Proofs of Universally

Composable Security. In CSF. IEEE, 167–183.
[46] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. 2016. A mathematical theory of resources. Inf. Comput. 250 (2016),

59–86. https://doi.org/10.1016/j.ic.2016.02.008
[47] Pierre Corbineau, Mathilde Duclos, and Yassine Lakhnech. 2011. Certified Security Proofs of Cryptographic Protocols in

the Computational Model: An Application to Intrusion Resilience. In Certified Programs and Proofs - First International
Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 7086),
Jean-Pierre Jouannaud and Zhong Shao (Eds.). Springer, 378–393. https://doi.org/10.1007/978-3-642-25379-
9_27

[48] Ronald Cramer and Victor Shoup. 2003. Design and Analysis of Practical Public-Key Encryption Schemes Secure

against Adaptive Chosen Ciphertext Attack. SIAM J. Comput. 33, 1 (2003), 167–226. https://doi.org/10.1137/
S0097539702403773

[49] Lukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for Dependent Type Theory. J. Autom.
Reason. 61, 1-4 (2018), 423–453. https://doi.org/10.1007/s10817-018-9458-4

[50] Ivan Damgaard. 2011. On Sigma-Protocols. lecture notes, Aarhus University. https://cs.au.dk/~ivan/Sigma.pdf
[51] Constantin Catalin Dragan, François Dupressoir, Ehsan Estaji, Kristian Gjøsteen, Thomas Haines, Peter Y. A. Ryan,

Peter B. Rønne, and Morten Rotvold Solberg. 2022. Machine-Checked Proofs of Privacy Against Malicious Boards for

Selene & Co. In 35th IEEE Computer Security Foundations Symposium, CSF 2022, Haifa, Israel, August 7-10, 2022. IEEE,
335–347. https://doi.org/10.1109/CSF54842.2022.9919663

[52] François Dupressoir, Konrad Kohbrok, and Sabine Oechsner. 2022. Bringing State-Separating Proofs to EasyCrypt - A

Security Proof for Cryptobox. In To appear in 35th IEEE Computer Security Foundations Symposium. IEEE. https:
//eprint.iacr.org/2021/326

[53] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. 2019. Simple High-Level Code for Cryptographic Arithmetic

- With Proofs, Without Compromises. In IEEE S&P. https://doi.org/10.1109/SP.2019.00005
[54] Denis Firsov and Dominique Unruh. 2022. Zero-Knowledge in EasyCrypt. Cryptology ePrint Archive, Paper 2022/926.

https://eprint.iacr.org/2022/926 https://eprint.iacr.org/2022/926.
[55] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. 2011. Modular code-based cryptographic verification. In

Proceedings of the 18th ACM Conference on Computer and Communications Security, Yan Chen, George Danezis, and

Vitaly Shmatikov (Eds.). ACM, 341–350. https://doi.org/10.1145/2046707.2046746
[56] Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. 2023. A Core Calculus for Equational

Proofs of Cryptographic Protocols. To appear at POPL 2023. https://github.com/ipdl/submission/raw/main/
main.pdf

[57] Jeremy Gibbons and Ralf Hinze. 2011. Just do it: simple monadic equational reasoning. In Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011. 2–14.
https://doi.org/10.1145/2034773.2034777

[58] Michèle Giry. 1982. A categorical approach to probability theory. In Categorical Aspects of Topology and Analysis,
B. Banaschewski (Ed.). Springer, 68–85. https://www.chrisstucchio.com/blog_media/2016/probability_the_
monad/categorical_probability_giry.pdf

https://doi.org/10.1007/978-3-030-99253-8_9
https://doi.org/10.1109/SP46214.2022.9833678
https://eprint.iacr.org/2021/467
https://eprint.iacr.org/2018/306
https://eprint.iacr.org/2021/1453
https://doi.org/10.1007/s10817-020-09581-w
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://github.com/easyuc/EasyUC/tree/master/uc-dsl
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1007/978-3-642-25379-9_27
https://doi.org/10.1007/978-3-642-25379-9_27
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1007/s10817-018-9458-4
https://cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1109/CSF54842.2022.9919663
https://eprint.iacr.org/2021/326
https://eprint.iacr.org/2021/326
https://doi.org/10.1109/SP.2019.00005
https://eprint.iacr.org/2022/926
https://eprint.iacr.org/2022/926
https://doi.org/10.1145/2046707.2046746
https://github.com/ipdl/submission/raw/main/main.pdf
https://github.com/ipdl/submission/raw/main/main.pdf
https://doi.org/10.1145/2034773.2034777
https://www.chrisstucchio.com/blog_media/2016/probability_the_monad/categorical_probability_giry.pdf
https://www.chrisstucchio.com/blog_media/2016/probability_the_monad/categorical_probability_giry.pdf

SSProve: A foundational framework for modular cryptographic proofs in Coq 61

[59] Shai Halevi. 2005. A plausible approach to computer-aided cryptographic proofs. IACR Cryptol. ePrint Arch. (2005),
181. http://eprint.iacr.org/2005/181

[60] Philipp G. Haselwarter, Benjamin Salling Hvass, Lasse Letager Hansen, Théo Winterhalter, Catalin Hritcu, and Bas

Spitters. 2023. The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography. Cryptology ePrint

Archive, Paper 2023/185. https://eprint.iacr.org/2023/185 https://eprint.iacr.org/2023/185.
[61] Carmit Hazay and Yehuda Lindell. 2010. Efficient Secure Two-Party Protocols - Techniques and Constructions. Springer.

https://doi.org/10.1007/978-3-642-14303-8
[62] Shin-ya Katsumata and Tetsuya Sato. 2013. Preorders on Monads and Coalgebraic Simulations. In Foundations of

Software Science and Computation Structures - 16th International Conference, FOSSACS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 145–160.
https://doi.org/10.1007/978-3-642-37075-5_10

[63] G M Kelly. 1982. Basic Concepts of Enriched Category Theory. 143 pages. Reprint of the 1982 original [Cambridge Univ.

Press, Cambridge; MR0651714].

[64] Konrad Kohbrok, Markulf Kohlweiss, Tahina Ramananandro, and Nikhil Swamy. 2020. Relational F* for State Separating

Cryptographic Proofs. F* wiki article. https://github.com/FStarLang/FStar/wiki/Relational-F*-for-State-
Separating-Cryptographic-Proofs

[65] Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transformers and Modular Interpreters. In Conference
Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 333–343. https://doi.org/
10.1145/199448.199528

[66] Kevin Liao, MatthewA. Hammer, and AndrewMiller. 2019. ILC: a calculus for composable, computational cryptography.

In PLDI. ACM, 640–654.

[67] Andreas Lochbihler, S. Reza Sefidgar, David A. Basin, and Ueli Maurer. 2019. Formalizing Constructive Cryptography

using CryptHOL. In CSF. IEEE, 152–166. https://doi.org/10.1109/CSF.2019.00018
[68] Saunders Mac Lane. 1978. Categories for the Working Mathematician (2 ed.). Graduate Texts in Mathematics, Vol. 5.

Springer, New York, NY.

[69] Assia Mahboubi and Enrico Tassi. 2021. Mathematical components. Online book. https://math-comp.github.io/
mcb/

[70] Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2020. The next 700 relational program logics.

Proc. ACM Program. Lang. 4, POPL (2020), 4:1–4:33. https://doi.org/10.1145/3371072
[71] Ueli Maurer. 2011. Constructive Cryptography - A New Paradigm for Security Definitions and Proofs. In Theory of

Security and Applications - Joint Workshop, TOSCA’11 (Lecture Notes in Computer Science, Vol. 6993). Springer, 33–56.
https://doi.org/10.1007/978-3-642-27375-9_3

[72] Ueli Maurer and Renato Renner. 2011. Abstract Cryptography. In Innovations in Computer Science - ICS’11. Tsinghua
University Press, 1–21. http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/14.html

[73] Roberto Metere and Changyu Dong. 2017. Automated Cryptographic Analysis of the Pedersen Commitment Scheme.

In Computer Network Security, Jacek Rak, John Bay, Igor Kotenko, Leonard Popyack, Victor Skormin, and Krzysztof

Szczypiorski (Eds.). Springer, 275–287.

[74] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I. Inf. Comput. 100, 1 (1992),
1–40. https://doi.org/10.1016/0890-5401(92)90008-4

[75] Robin Milner, Mads Tofte, and Robert Harper. 1990. The Definition of Standard ML. MIT Press.

[76] Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 14–23.

https://doi.org/10.1109/LICS.1989.39155
[77] Christine Paulin-Mohring, David Baelde, and Pierre Courtieu. 2009. ALEA Coq Library. https://github.com/coq-

community/alea
[78] Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptography Framework. In Principles of Security and

Trust - 4th International Conference, POST 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9036), Riccardo
Focardi and Andrew C. Myers (Eds.). Springer, 53–72. https://doi.org/10.1007/978-3-662-46666-7_4

[79] Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11,
1 (2003), 69–94. https://doi.org/10.1023/A:1023064908962

[80] Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Appl. Categorical Struct. 11, 1
(2003), 69–94. https://doi.org/10.1023/A:1023064908962

[81] Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems,
18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5502),

http://eprint.iacr.org/2005/181
https://eprint.iacr.org/2023/185
https://eprint.iacr.org/2023/185
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-37075-5_10
https://github.com/FStarLang/FStar/wiki/Relational-F*-for-State-Separating-Cryptographic-Proofs
https://github.com/FStarLang/FStar/wiki/Relational-F*-for-State-Separating-Cryptographic-Proofs
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1109/CSF.2019.00018
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/
https://doi.org/10.1145/3371072
https://doi.org/10.1007/978-3-642-27375-9_3
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/14.html
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1109/LICS.1989.39155
https://github.com/coq-community/alea
https://github.com/coq-community/alea
https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1023/A:1023064908962

62 Haselwarter, Rivas, Van Muylder, Winterhalter, et al.

Giuseppe Castagna (Ed.). Springer, 80–94. https://doi.org/10.1007/978-3-642-00590-9_7
[82] Christoph Rauch, Sergey Goncharov, and Lutz Schröder. 2016. Generic Hoare Logic for Order-Enriched Effects with

Exceptions. In Recent Trends in Algebraic Development Techniques - 23rd IFIP WG 1.3 International Workshop, WADT
2016, Gregynog, UK, September 21-24, 2016, Revised Selected Papers. 208–222. https://doi.org/10.1007/978-3-
319-72044-9_14

[83] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. IETF RFC 5246. https://tools.ietf.
org/html/rfc8446

[84] Phillip Rogaway and Yusi Zhang. 2018. Simplifying Game-Based Definitions - Indistinguishability up to Correctness

and Its Application to Stateful AE. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 10992), Hovav Shacham and Alexandra Boldyreva (Eds.). Springer, 3–32. https://doi.org/10.1007/978-3-
319-96881-0_1

[85] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. 2014. F-ing modules. J. Funct. Program. 24, 5 (2014), 529–607.
https://doi.org/10.1017/S0956796814000264

[86] Mike Rosulek. 2021. The Joy of Cryptography. Online textbook. http://web.engr.oregonstate.edu/~rosulekm/
crypto/

[87] Claus Schnorr. 1991. Efficient signature generation by smart cards. Journal of Cryptology 4 (01 1991), 161–174.

https://doi.org/10.1007/BF00196725
[88] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. 2022.

Enforcing Fine-grained Constant-time Policies. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas

Cremers, and Elaine Shi (Eds.). ACM, 83–96. https://doi.org/10.1145/3548606.3560689
[89] Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptol. ePrint Arch.

(2004), 332. http://eprint.iacr.org/2004/332
[90] Nikolaj Sidorenco, Sabine Oechsner, and Bas Spitters. 2021. Formal security analysis of MPC-in-the-head zero-

knowledge protocols. In 2021 IEEE 34th Computer Security Foundations Symposium (CSF). 1–14. https://doi.org/
10.1109/CSF51468.2021.00050

[91] Nikolaj Sidorenco and Bas Spitters. 2022. A formal security analysis of Blockchain voting. preprint. https:
//www.cs.au.dk/~spitters/ovn.pdf

[92] Jonathan Sterling and Robert Harper. 2021. Logical relations as types: Proof-relevant parametricity for program

modules. Journal of the ACM (JACM) 68, 6 (2021), 1–47.
[93] Alley Stoughton, François Dupressoir, Pierre-Yves Strub, César Kunz, Juan Manuel Crespo, Benjamin Grégoire, Gilles

Barthe, and Benedikt Schmidt. 2018. EasyCrypt Reference Manual. Technical Report. 206 pages.
[94] Pierre-Yves Strub. 2020. XHL. https://github.com/strub/xhl
[95] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan

Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-

Béguelin. 2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

[96] Christian Urban. 2008. Nominal Techniques in Isabelle/HOL. J. Autom. Reason. 40, 4 (2008), 327–356. https:
//doi.org/10.1007/s10817-008-9097-2

[97] Philip Wadler. 1990. Comprehending Monads. In LFP’90 (Nice, France). ACM, New York, NY, USA, 61–78. https:
//doi.org/10.1145/91556.91592

[98] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher, and Andrew W. Appel. 2017.

Verified Correctness and Security of mbedTLS HMAC-DRBG. In CCS’17. ACM, 2007–2020. https://doi.org/10.
1145/3133956.3133974

https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-319-72044-9_14
https://doi.org/10.1007/978-3-319-72044-9_14
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1017/S0956796814000264
http://web.engr.oregonstate.edu/~rosulekm/crypto/
http://web.engr.oregonstate.edu/~rosulekm/crypto/
https://doi.org/10.1007/BF00196725
https://doi.org/10.1145/3548606.3560689
http://eprint.iacr.org/2004/332
https://doi.org/10.1109/CSF51468.2021.00050
https://doi.org/10.1109/CSF51468.2021.00050
https://www.cs.au.dk/~spitters/ovn.pdf
https://www.cs.au.dk/~spitters/ovn.pdf
https://github.com/strub/xhl
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3133956.3133974

	Abstract
	1 Introduction
	2 Using SSProve: Key Ideas and Examples
	2.1 An introduction to SSP
	2.2 Proving perfect indistinguishability steps in a probabilistic relational program logic
	2.3 Security proof of PRF-based encryption in SSProve
	2.4 Security proof of ElGamal in SSProve

	3 Formalizing State-Separating Proofs
	3.1 Syntax for cryptographic code (free monad)
	3.2 Semantics of cryptographic code
	3.3 Packages
	3.4 Package laws

	4 Probabilistic Relational Program Logic
	4.1 Selected rules
	4.2 Proof sketch for Theorem 2.4

	5 Semantic Model and Soundness of Rules
	5.1 Relational effect observation
	5.2 Effect observation for probabilities and failures
	5.3 Adding state
	5.4 Categorical foundations of the framework
	5.5 Comparing approaches to semantic models for relational program logics

	6 Case Study: KEM-DEM
	6.1 The KEY package
	6.2 KEM and DEM
	6.3 Security of the KEM-DEM construction

	7 Case Study: Σ-Protocols
	7.1 The SIGMA scheme
	7.2 Commitment Schemes from Σ-Protocols
	7.3 Concrete Implementation: Schnorr's protocol

	8 Related Work
	9 Future Work
	Acknowledgments
	A Package equivalence for KEM-DEM
	References

