负载均衡--加权随机算法(Weight Random)

本文介绍了一种基于服务器配置和负载的加权随机调度算法。该算法通过为不同服务器分配权重来实现请求的智能分发,确保高配置服务器承担更多负载。通过Java实现,演示了如何根据权重动态选择服务器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加权随机法根据服务器的配置和系统的负载,分配不同的权重,按照权重随机请求后端服务器。

一、算法描述

假设有 N 台服务器 S = {S0, S1, S2, …, Sn},权重为 W = {W0, W1, W2, …, Wn},权重之和为 weightSum, 服务器列表为 serverList,算法可以描述为:
1、初始化 serverList,将 W0 个 S0 加入至serverList,将 W1 个 S1 加入至serverList,依据此规则,将所有的服务器加入至 serverList 中;
2、通过随机函数生成 0 到 weightSum 之间的任意整数,将该数字作为索引,从 serverList 中获取对应的服务器;

假定我们现在有如下四台服务器:

服务器地址权重
192.168.1.11
192.168.1.22
192.168.1.33
192.168.1.44

初始化服务列表后, serverList 如下:

服务器地址序号
192.168.1.11
192.168.1.22
192.168.1.23
192.168.1.34
192.168.1.35
192.168.1.36
192.168.1.47
192.168.1.48
192.168.1.49
192.168.1.410

首先,根据权重的不同,向 serverList 添加相应个数的服务器;然后,通过随机算法,随机获取访问的服务器。

二、java代码实现

package com.yidian.wemedia.civilization.schedulealgothrim;

import com.google.common.collect.SortedMultiset;
import com.google.common.collect.TreeMultiset;
import org.apache.commons.collections4.CollectionUtils;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Map;
import java.util.Random;
import java.util.Set;
import java.util.TreeMap;

class Server implements Serializable {
    private static final long serialVersionUID = 7246747589293111189L;

    private String server;
    private Integer weight;
    private String description;

    public Server(String server, String description, Integer weight) {
        this.server = server;
        this.description = description;
        this.weight = weight;
    }

    public String getDescription() {
        return description;
    }

    public void setDescription(String description) {
        this.description = description;
    }


    public String getServer() {
        return server;
    }

    public void setServer(String server) {
        this.server = server;
    }

    public Integer getWeight() {
        return weight;
    }

    public void setWeight(Integer weight) {
        this.weight = weight;
    }
}

class ServerManager {
    public static Map<String, Server> serverMap = new TreeMap<>();

    static {
        serverMap.put("192.168.1.1", new Server("192.168.1.1", "第1台server", 1));
        serverMap.put("192.168.1.2", new Server("192.168.1.2", "第2台server", 2));
        serverMap.put("192.168.1.3", new Server("192.168.1.3", "第3台server", 3));
        serverMap.put("192.168.1.4", new Server("192.168.1.4", "第4台server", 4));
        serverMap.put("192.168.1.5", new Server("192.168.1.5", "第4台server", 0));
    }
}

class RandomBalance {
    private static final Random RANDOM = new Random();
    private static ArrayList<String> middleServerList;
    private static Integer weightSum = 0;

    public static String getServer() {
        if (CollectionUtils.isEmpty(middleServerList)) {
            ArrayList<String> serverList = new ArrayList<>();
            Integer tempWeightSum = 0;

            Set<String> serverSet = ServerManager.serverMap.keySet();
            for (String server : serverSet) {
                Integer weight = ServerManager.serverMap.get(server).getWeight();
                tempWeightSum += weight;
                for (int i = 0; i < weight; i++) {
                    serverList.add(server);
                }
            }
            middleServerList = serverList;
            weightSum = tempWeightSum;
        }

        return middleServerList.get(RANDOM.nextInt(weightSum));
    }
}

public class WeightRandomScheduleTest {
    public static void main(String[] args) {
        SortedMultiset<String> serverSet = TreeMultiset.create();
        for (int i = 0; i < 100; i++) {
            String server = RandomBalance.getServer();
            Server curServer = ServerManager.serverMap.get(server);
            System.out.println(server + ", " + curServer.getDescription());
            serverSet.add(server, 1);
        }

        ServerManager.serverMap.forEach((key, value)->{
            System.out.println(key + ", count:" + serverSet.count(key));
        });
    }
}

运行结果如下所示:

192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.2, 第2台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.2, 第2台server
192.168.1.3, 第3台server
192.168.1.2, 第2台server
192.168.1.1, 第1台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.2, 第2台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.2, 第2台server
192.168.1.1, 第1台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.1, 第1台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.1, 第1台server
192.168.1.4, 第4台server
192.168.1.2, 第2台server
192.168.1.2, 第2台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.1, 第1台server
192.168.1.3, 第3台server
192.168.1.3, 第3台server
192.168.1.2, 第2台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.1, 第1台server
192.168.1.3, 第3台server
192.168.1.2, 第2台server
192.168.1.2, 第2台server
192.168.1.4, 第4台server
192.168.1.2, 第2台server
192.168.1.4, 第4台server
192.168.1.1, 第1台server
192.168.1.2, 第2台server
192.168.1.2, 第2台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.1, 第1台server
192.168.1.2, 第2台server
192.168.1.2, 第2台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.3, 第3台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.2, 第2台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.1, 第1台server
192.168.1.2, 第2台server
192.168.1.4, 第4台server
192.168.1.2, 第2台server
192.168.1.2, 第2台server
192.168.1.3, 第3台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.4, 第4台server
192.168.1.2, 第2台server
192.168.1.3, 第3台server
192.168.1.1, 第1台server
192.168.1.3, 第3台server
192.168.1.1, count:10
192.168.1.2, count:20
192.168.1.3, count:28
192.168.1.4, count:42
192.168.1.5, count:0

说明:
1、首先,使用 Random 对象随机生成 [0, weightSum) 的整数;然后,通过索引获取到服务器。weightSum其实就是serverList.size()。
2、在多线程的情况下,若线程A修改 ServerManager.serverMap 的值,则线程B无法即时拿到线程A修改后的值,可能会导致请求错误,需要调用方进行容错处理。
3、从宏观的角度看,访问量越大,负载越均衡。从微观的角度看,局部并不那么均衡。

### 负载均衡算法背后的数学原理分析 负载均衡算法的核心在于通过合理的数学模型和统计方法,将请求均匀地分配到多个服务器上,从而最大化系统的吞吐量并最小化响应时间。以下是几种常见负载均衡算法的数学原理分析。 #### 1. 轮询算法 (Round Robin) 轮询算法是一种最简单的负载均衡策略,假设所有服务器的处理能力相同。它按照固定的顺序依次将请求分发给每个服务器。 从数学角度来看,轮询算法可以被看作一个等概率分布问题。如果系统中有 \( n \) 台服务器,则每台服务器接收到请求的概率为 \( \frac{1}{n} \)[^4]。然而,当请求服务间隔时间变化较大时,这种等概率分布可能导致实际负载不均衡。因此,轮询算法适合于服务器性能一致且请求到达较为均匀的场景。 #### 2. 加权轮询算法 (Weighted Round Robin) 加权轮询算法轮询的基础上引入了权重的概念,用于反映不同服务器的处理能力差异。假设服务器 \( i \) 的权重为 \( w_i \),则其接收到请求的概率可以表示为: \[ P(i) = \frac{w_i}{\sum_{j=1}^{n} w_j} \] 其中 \( n \) 是服务器总数[^3]。加权轮询算法通过调整权重参数,使得高性能服务器能够承担更多的请求,从而实现更优的负载均衡效果。 #### 3. 最小连接数算法 (Least Connections) 最小连接数算法根据当前服务器的连接数来决定请求的分配。假设服务器 \( i \) 当前的连接数为 \( c_i \),则请求会被分配给连接数最少的服务器。 从数学角度看,该算法的目标是最小化整个系统的加权平均连接数: \[ \text{minimize } \sum_{i=1}^{n} c_i \] 此外,为了进一步优化性能,通常会结合权重参数 \( w_i \),使得高权重服务器能够承载更多连接。此时,目标函数变为: \[ \text{minimize } \sum_{i=1}^{n} \frac{c_i}{w_i} \][^2] #### 4. 哈希一致性算法 (Consistent Hashing) 哈希一致性算法通过将请求映射到一个固定范围的虚拟节点上来实现负载均衡。假设请求的哈希值为 \( h(r) \),并且系统中有 \( n \) 个服务器,则请求会被分配到距离 \( h(r) \) 最近的服务器上。 从数学角度看,一致性哈希算法的核心是环形空间上的模运算。具体而言,服务器 \( i \) 的位置可以通过以下公式计算: \[ p_i = h(s_i) \mod M \] 其中 \( s_i \) 是服务器 \( i \) 的标识符,\( M \) 是哈希空间的大小。通过这种方式,一致性哈希算法能够在服务器增减时保持大部分请求的分配不变,从而减少缓存失效带来的开销[^1]。 #### 5. 随机算法 (Random Algorithm) 随机算法通过生成随机数来决定请求的分配。假设服务器 \( i \) 的权重为 \( w_i \),则其被选中的概率为: \[ P(i) = \frac{w_i}{\sum_{j=1}^{n} w_j} \] 与加权轮询类似,随机算法也支持权重调整,但其分配过程具有一定的随机性。这使得随机算法在某些情况下能够更好地应对突发流量[^4]。 --- ```python import random def weighted_random_selection(servers): total_weight = sum(server['weight'] for server in servers) rand = random.uniform(0, total_weight) cumulative_weight = 0 for server in servers: cumulative_weight += server['weight'] if cumulative_weight >= rand: return server['name'] ``` --- ### 总结 负载均衡算法的数学原理主要涉及概率分布、优化理论和哈希函数等领域。不同的算法适用于不同的应用场景,选择合适的算法需要综合考虑服务器性能、请求特征以及系统规模等因素。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值